Домой / Одноклассники / Транкинговая связь: разумная замена сотовой связи. Транкинговая система связи, системы подвижной радиосвязи, обзор и сравнительный анализ стандартов цифровой транкинговой радиосвязи Структура состав транкинговой связи

Транкинговая связь: разумная замена сотовой связи. Транкинговая система связи, системы подвижной радиосвязи, обзор и сравнительный анализ стандартов цифровой транкинговой радиосвязи Структура состав транкинговой связи

Транкинговые (транковые) системы являются видом систем подвижной связи, применяются в основном для обеспечения мобильной связи различными ведомствами (МВД, МЧС и др.). Под транкингом понимают метод свободного и равного доступа мобильных абонентов ко всем каналам сети связи. Транкинговая система радиосвязи представляет собой систему, обеспечивающую динамическое предоставление малого числа каналов связи большему числу абонентов (корреспондентов). В такой системе каждому абоненту может быть предоставлен любой из свободных каналов. Абонентская радиостанция может посылать запрос на сеанс связи на все базовые станции сети и при освобождении канала связи на любой из них, занимает этот канал на время переговоров. Такой способ связи позволяет обеспечить вероятность отказа в обслуживании гораздо ниже, чем в одноканальных или многоканальных радиотелефонных системах . Структурная схема транкинговой связи представлена на рис. 2.4.

Рисунок 2.4- Структурная схема транкинговой связи: РТ – радиотелефон сети транкинговой связи, МС- мобильная станция сети транкинговой связи, БПС – базовая передающая станция, ТК – транкинговый контроллер, ЦКС – центр коммутации связи, ТФОП – телефонная сеть общего пользования

Принципиальное отличие транкинговых систем от других систем мобильной связи заключается в том, что частотные каналы не закреплены за определенными абонентами. Система имеет свой определенный диапазон работы, который обеспечивается несколькими частотными каналами. Выбор свободного канала связи для сеанса осуществляется самой системой. По окончании сеанса связи этот же частотный канал может быть предоставлен другим абонентам системы.

Основной смысл транкингового способа организации связи заключается в том, что одновременные сеансы связи большого количества абонентов имеют определенную вероятность, поэтому количество рабочих частот можно подобрать таким, чтобы полная занятость каналов связи была не больше допустимой. Вышесказанное можно пояснить временной диаграммой работы 4-х канальной транкинговой системы (рис. 2.5), в которой занятость каждого из каналов связи составляет 40-60%. Как видно из диаграммы, занятость каждого канала связи в отдельности довольно высокая, а загрузка системы в целом низкая (10%). В случае занятости всех каналов связи новый запрос на обслуживание не теряется, а ставится в очередь до появления свободного канала.

1 канал
2 канал
3 канал
4 канал
система


Рисунок 2.5- Временная диаграмма работы системы транкинговой связи

В транкинговых системах связи выделение канала конкретному абоненту осуществляется двумя методами.

Первый метод предусматривает поиск свободного канала и подачу сигнала вызова мобильной абонентской станцией. Перед установлением связи мобильная станция осуществляет автоматический поиск свободного канала и на каждом определенном канале предпринимает попытку вхождения в связь с базовой станцией. При этом проявляется основной недостаток этого варианта, а именно, длительность цикла установления канала связи значительно превышает аналогичную длительность при фиксированном закреплении каналов за конкретными мобильными абонентами. Поэтому их использование эффективно при небольшом количестве каналов связи.

Второй метод построения транкинговой системы позволяет производить поиск свободного канала связи подсистемой управления базовой станции. Для решения этой задачи используется специальный канал управления базовой станции, через который обеспечиваются функции установления, обеспечения и прекращения связи.

Транкинговые системы предоставляют такие возможности, как автоматическое переключение установленного соединения на исправный канал при неисправности основного канала связи, оперативное переключение работающего канала связи на другую несущую частоту при появлении сильных помех.

Наиболее простой из существующих транкинговых систем является однозоновая аналоговая система стандарта Smar Trunk II, эксплуатируемая в диапазонах 146 – 174 МГц и 400 – 470 МГц. Базовая станция содержит один управляющий и пятнадцать рабочих каналов, которые обеспечивают работу до четырех тысяч абонентов.

Более современной аналоговой транкинговой системой является оборудование MPT 1327 с централизованным управлением (рис. 2.6).

В настоящее время имеет место тенденция перехода от аналоговых систем связи к цифровым. Полностью цифровой транкинговой системой является система стандарта TETRA.

Структура комплексов различных транкинговых систем примерно одинакова. Модульный принцип построения таких систем позволяет производить их наращивание до необходимой емкости.

Базовое оборудование каждого канала включает:

Дуплексный приемопередатчик (репитер);

Транкинговый контроллер;

Антенно-фидерное устройство.

Абонентские комплекты выполнены на базе популярных радиостанций Kenwood, Icom, Alinco, Motorola, Standard, Yaesu и др. с установленными в них специальными логическими платами, управляющими радиостанцией и реализующими определенные функции.

Радиостанции могут программироваться под функциональные задачи абонентов этой системы с помощью специального устройства – программатора.

Различные транкинговые системы обеспечивают аналогичный набор возможностей. Например, и однозоновые и многозоновые системы достигают увеличения радиуса действия связи. В однозоновой системе для этого требуется увеличение мощности передатчика базовой станции и применения более чувствительных антенн. В многозоновой системе тот же результат достигается использованием нескольких базовых станций пониженной мощностью передатчиков. Большое количество базовых станций в многозоновой системе позволяет снизить удаленность абонентской радиостанции от базовой, что повышает устойчивость связи. При перемещении абонента в соседнюю зону обеспечивается эстафетная передача сопровождения связи от одной базовой станции к другой, то есть установленное соединение не прерывается. Современные транкинговые системы обеспечивают возможность разделения общего числа абонентских радиостанций на группы (отряды), внутри которых осуществим индивидуальный и групповой вызов. Такую систему можно применить, например, в пределах муниципального образования, объединив в общую радиосеть несколько городских служб, в том числе подразделения местного гарнизона пожарной охраны, аварийно-спасательные формирования. При этом каждая служба может иметь вполне изолированную от других служб сеть связи, а взаимные вызовы между группами будут программно разрешены только конкретным радиостанциям.

В транкинговых системах реализуются следующие виды вызовов:

Индивидуальный вызов может быть адресован любой конкретной радиостанции, при этом каждой радиостанции присваивается определенный набор цифр;

Групповой вызов предназначен заранее определенной группе абонентов, имеющей свой идентификационный номер;

Общий вызов может быть направлен всем абонентам радиосети (группы);

Экстренный вызов позволяет прервать переговоры любых абонентов, ведущихся в радиосети;

Приоритетный вызов обеспечивает преимущество в соединении для главных радиостанций в соответствующей группе абонентов;

Посылка статуса позволяет радиостанция с алфавитно-цифровым дисплеем автоматически выбирать из памяти сообщения, соответствующие данному статусу и отражать его в виде строки текста;

Радиотелефонный вызов обеспечивает абоненту выход с радиостанции в телефонную сеть общего пользования, а также в сеть учрежденческой АТС, причем его подключение к таким сетям может происходить как по абонентской линии, так и по соединительной линии. Вызов абонента мобильной станции транкинговой системы из телефонной сети общего пользования осуществляется с помощью дополнительного номера;

Переадресация вызова позволяет перевести его с одной радиостанции на заранее определенную другую радиостанцию;

Прямой вызов обеспечивает переход радиостанции в симплексный режим работы для установления связи с другими радиостанциями сети без участия базовой станции.

Важными сервисными функциями современных транкинговых систем являются возможность передачи данных между радиостанциями и обеспечение беспроводного доступа к базам данных.

К дополнительным функциям этих систем следует отнести возможность передачи коротких буквенно-цифровых сообщений по каналу управления без занятия рабочего канала, а также обеспечение голосовой почты.

Существенным преимуществами транкинговой системы является индивидуальное программирование доступа к каждому виду возможностей, установка предельного времени разговора и приоритета абонента, наличие защиты от несанкционированного доступа в систему. Кроме этого, эти системы могут применяться в качестве транспортной среды для систем определения месторасположения подвижных объектов и систем телеметрии.

Широкие собственные возможности транкинговых систем, совместимость их работы с различными видами телефонных сетей позволяют эффективно использовать эти системы для обеспечения оперативной диспетчерской связи. Ограничивают их использование по сравнению с обычными (конвенциональными) радиостанциями более сложные процедуры эксплуатации.

Транкинговые сети радиосвязи находят широкое применение для решения задач управления РСЧС и гражданской обороны с использованием мобильной компоненты связи. В такие сети, как правило, включаются стационарные, автомобильные и переносные радиостанции начальников гражданской обороны субъектов РФ, административного центра, его городских районов, начальников органов управления ГОЧС субъекта Российской Федерации, административного центра и его районов, членов комиссии по предупреждению и ликвидации чрезвычайных ситуаций и обеспечению пожарной безопасности (КЧСПБ), начальников служб гражданской обороны, начальников поисково-спасательных отрядов, дежурных служб административного центра. Взаимное использование транкинговых сетей связи основано на внесении в их базы данных обшей нумерации радиостанций должностных лиц и оперативных групп, выделенных для использования в качестве взаимодействующих.

Первые системы мобильной радиосвязи появились в США в конце 30-х гг. Это были одноканальные конвенциональные системы, предназначенные, в первую очередь, для радиосвязи в полиции и армии. Во время Второй мировой войны были созданы первые многоканальные системы с "ручным" переключением каналов.

Существенный недостаток конвенциальных систем - их незащищенность от несанкционированного применения частотных ресурсов. Любой сведущий в радиотехнике радиолюбитель способен собрать устройство для настройки на используемые данной системой частоты и стать, таким образом, несанкционированным пользователем. Кроме того, в этих системах непросто отключить абонентов, создающих чрезмерную нагрузку бесконечными неделовыми "беседами". Связь абонентских терминалов с телефонной сетью общего пользования (ТфОП) реализована далеко не во всех конвенциальных системах.

Основная идея транкинговой связи состоит в том, что при поступлении запроса от абонента на установление соединения система автоматически определяет свободные каналы и назначает один из них данной паре или группе абонентов. Частично проблема автоматизации выбора канала была решена в так называемых псевдотранкинговых системах, к которым можно отнести популярные в России SmarTrunk/SmarTrunk II фирмы SmarTrunk System и ArcNet компании Motorola. Их радиостанции не имеют выделенного управляющего канала (control channel) и в поисках свободного сканируют выделенный диапазон частот. Большинство подобных систем (за исключением ArcNet) являются однозонововыми.

В конце 70-х гг. рынок средств радиосвязи пополнился первыми аналоговыми транкинговыми системами с выделенным управляющим каналом. Такие системы реализуют передачу речевой информации по принципу "один канал - одна несущая", частотный разнос каналов обычно составляет 25 или 12,5 кГц. Теоретически, при достаточном количестве частотных каналов, они способны обслуживать десятки тысяч абонентов. Однако реальные значения выделенного частотного ресурса ограничивают число абонентов аналоговой транкинговой сети до 3-5 тыс.

Кроме того, эти системы по-прежнему не решают проблему защиты сети от несанкционированного доступа. Системы на базе аналоговых стандартов обеспечивают связь с ТфОП абонентских терминалов, но такие терминалы весьма дороги (1500-2000 дол.). Существенным недостатком данных систем является также ограниченное число групп пользователей. И хотя реализация функции динамического переконфигурирования групп позволяет обойти это ограничение, овчинка не всегда стоит выделки: сложность оборудования приводит к существенному удорожанию инфраструктуры.

В начале 90-х гг. стали появляться транкинговые системы, использующие цифровые технологии передачи голосового сигнала. Сегодня наибольшую известность получили такие цифровые стандарты, как APCO25, TETRA и PRISM (цифровая версия EDACS). Они позволяют значительно увеличить емкость системы - до нескольких тысяч абонентов. Кроме того, в них практически решена проблема защиты данных и конфиденциальности переговоров, поскольку стать несанкционированным пользователем цифровой системы или прослушать канал невозможно.

Многие современные системы транкинговой связи (рис. 1) - как аналоговые, так и цифровые - способны осуществлять передачу данных по каналу голосовой связи, т. е. выполнять функции беспроводного модема. При этом в аналоговых стандартах скорость передачи данных не превышает 4800 бит/с, а в цифровых достигает более высоких значений - от 9600 бит/с до 28 кбит/с (TETRA). В отличие от аналоговых, цифровые системы транкинговой связи позволяют передавать текстовые сообщения через управляющие каналы (пейджинг). Текст сообщения выводится на дисплей абонентского терминала.

В настоящее время можно выделить три различные сферы применения систем мобильной радиосвязи: государственные (полиция, пожарная охрана, скорая помощь и т. п.); - типа PS (Public Safety); частные, типа PMR (Private Mobile Radio); коммерческие сети общего пользования SMR (Shared Mobile Radio).

Рисунок 1.
Технологии мобильной связи (* технологии на базе TDMA)

Системы первого типа обычно рассчитаны на сравнительно небольшое число абонентов (как правило, не более 500-1000). Для них характерны повышенные требования к обеспечению надежности и конфиденциальности, а также наличие специальных функций, подобных Emergency Call. Стоимость абонентских терминалов систем PS достаточно высока. Из упомянутых ранее сетей к категории Public Safety/PMR относятся SmartNet, EDACS/ PRISM, системы на базе стандарта APCO25, а также сети, основой которых стал разрабатываемый в настоящее время цифровой стандарт TETRA.

Коммерческие системы типа SMR отличает большая емкость (число абонентов может достигать десятков тысяч), возможность предоставления дополнительных информационных услуг, а также умеренная стоимость абонентских терминалов. Среди них есть сети, построенные на базе SmartZone, протоколов MPT1327, LTR/ESAS и системы GeoNet. Отметим, что большинство существующих аналоговых систем SMR имеют ограничения на повторное использование частот и переключение каналов, а также автоматическую идентификацию абонентов при их перемещении из одной зоны в другую и т. п.

В отличие от систем конвенциональной и транкинговой радиосвязи мобильная телефонная сотовая связь предназначена, в первую очередь, для обеспечения персональной мобильной голосовой связи "один на один" в дуплексном режиме. Первое поколение сотовых технологий, появившееся в начале 80-х гг., использовало аналоговые стандарты. Наиболее широко в мире (в том числе в России) распространены североамериканский стандарт AMPS, британский TACS и скандинавский NMT-450.

Применение цифровых технологий позволило понять, что два разных вида мобильной голосовой связи - сотовая и транкинговая - имеют много общего (территориальная организация системы, инфраструктура, организация выхода на ТфОП и т. п.). Однако аналоговые технологии транкинговых систем неспособны обеспечить уровень сервиса, предоставляемый мобильной телефонной связью.

В середине 90-х гг. компания Motorola решила реализовать идею интегрированной системы, сочетающей в себе возможности групповой и диспетчерской радиосвязи, мобильной сотовой телефонной связи, а также передачи алфавитно-цифровых сообщений (пейджинга) и данных. Предлагаемая система должна была обеспечить современный уровень сервиса для всех видов связи. Все это было реализовано в технологии iDEN (integrated Digital Enhanced Network).

Услуги системы

Мобильная диспетчерская радиосвязь на базе технологии iDEN обеспечивает все виды услуг, предоставляемых современными цифровыми транкинговыми системами:

  • групповой вызов (group call) для мобильных абонентов и диспетчеров в режиме полудуплексной связи. Для реализации вызова достаточно одного нажатия кнопки; время установления связи не превышает 0,5 с. При этом используется лишь один канал речевой связи - вне зависимости от числа абонентов в группе. Число возможных групп в iDEN достаточно велико (65 535), что избавляет от необходимости иметь функцию динамического переконфигурирования групп. Все конфигурации могут быть созданы заранее: при необходимости абоненты просто переходят в соответствующие группы. Члены группы могут находиться на расстоянии десятков и сотен километров друг от друга (разумеется, в пределах зоны покрытия системы);
  • персональный вызов (private call) в полудуплексном режиме, когда в разговоре участвуют только два абонента и обеспечивается полная конфиденциальность переговоров. Заметим, что в режиме группового и индивидуального вызова на дисплее абонентского терминала вызываемого абонента появляется имя вызывающего либо его цифровой идентификатор;
  • сигнализация вызова (call alert) - передача специального сигнала абоненту (или группе), указывающего на необходимость установления радиосвязи. Если в этот момент абонент находится вне зоны системы либо абонентский терминал отключен, вызов запоминается в системе. В тот момент, когда абонент становится доступным, он получает звуковой сигнал, а на экране терминала появляется идентификатор вызывающего абонента. Только после этого вызывающий абонент получает подтверждение получения вызова.

Кроме услуг, характерных для обычной транкинговой связи, система iDEN предоставляет ряд возможностей современных мобильных телефонных систем:

  • мобильная телефонная связь между абонентами в том числе и через ТфОП (как входящая, так и исходящая в дуплексном режиме). Система iDEN обеспечивает функции локальной телефонии (мини-АТС, УПАТС) голосовую почту (voice mail), междугороднюю и международную связь;
  • передачу текстовых сообщений. Абоненты могут принимать алфавитно-цифровые сообщения, отображенные на экране абонентского терминала, который способен хранить до 16 сообщений по 140 символов. При этом обеспечивается как групповая, так и индивидуальная рассылка сообщений. Получение текстовых сообщений возможно одновременно с сеансом мобильной телефонной связи;
  • передачу данных. Портативные (носимые) терминалы iDEN имеют встроенные модемы и могут подключаться к ПК через адаптер RS-232С. В режиме коммутации каналов обеспечивается скорость передачи данных до 9600 бит/с, а в пакетном режиме - до 64 кбит/с. Для повышения достоверности передачи данных в системе используется схема коррекции ошибок с опережением. Функция передачи данных позволяет мобильным абонентам принимать и посылать факсимильные сообщения и электронную почту, обмениваться данными с компьютерами офиса и обеспечивает доступ к Internet. В пакетном режиме поддерживается стандартный сетевой протокол TCP/IP.

Отметим, что добавление функции передачи данных к существующей системе iDEN не требует установки на базовых станциях (БС) дополнительного оборудования. Необходимо лишь установить дополнительные блоки центральной инфраструктуры управления системой и инсталлировать соответствующее ПО на базовых станциях и центральной системе.

Абонентские терминалы

Хотя система iDEN обеспечивает несколько видов связи, это не означает, что абоненту необходимо "подписываться" на все виды услуг и, соответственно, приобретать у оператора полнофункциональный абонентский терминал. Пользователь всегда может выбрать модель, которая соответствует интересующему его пакету услуг. Стоимость портативных абонентских терминалов iDEN и цифровых сотовых телефонов примерно одинакова.

Портативные терминалы i370/r370 способны работать и как транкинговые радиостанции, и как мобильные телефоны. Они оснащены многострочным ЖК-дисплеем, на который выводятся списки доступных групп (абонентов) и алфавитно-цифровые сообщения. Усовершенствованный многофункциональный терминал i600 имеет меньшие размеры и вес, а также увеличенный срок службы батарей.

Новейшая модель портативного терминала i1000 имеет еще меньшие вес и размер: его вес без батарей равен 120 г, размеры - 120х60х30 мм.

Модели i470/r470 оснащены встроенным модемом, что позволяет использовать их для передачи данных и факсимильных сообщений. Кроме того, эти терминалы поддерживают дополнительные функции системы iDEN, такие как одновременная работа в нескольких группах, обеспечение связи в режиме изолированной БС (при нарушении связи с центральной инфраструктурой системы), Emergency Call и т. п.

Модели r370 и 470, удовлетворяющие требованиям военных стандартов США, имеют ударопрочный корпус и не боятся влаги. Выходная мощность сигнала портативных терминалов всех типов - 600 мВт.

Семейство мобильных абонентских терминалов iDEN состоит из трех моделей - m100, m370 и m470. Первый работает только в режиме dispatch radio, два других оснащены телефонной трубкой и поддерживают мобильную телефонную связь. Кроме того, модель m470 имеет встроенный модем и обеспечивает те же специальные функции, что и терминалы i470/r470. Все типы мобильных терминалов имеют выходную мощность 3 Вт.

В системе iDEN предусмотрены также настольные диспетчерские станции, выполненные на базе мобильных терминалов m100/m370/m470. Они имеют внешнюю антенну, настольный микрофон и блок питания от сети переменного тока.

Радиоинтерфейс и кодирование голоса

Основой технологии iDEN является стандарт TDMA (Time Division Multiple Access), в соответствии с которым по каждому частотному каналу шириной 25 кГц одновременно передаются 6 оцифрованных речевых сигналов. Технология iDEN не требует, чтобы все частотные каналы были смежными.

Временной интервал 90 мс разделен на 6 временных слотов продолжительностью по 15 мс, в каждом из которых передается один голосовой сигнал (рис. 2). Применение модуляции радиосигнала по методу M16-QAM (Quadrature Amplitude Modulation) обеспечивает суммарную скорость передачи данных по одному частотному каналу 64 кбит/с (скорость передачи в голосовом канале - 7,2 кбит/с). Адекватное воспроизведение человеческого голоса и других звуков при столь невысокой скорости передачи достигается за счет использования усовершенствованной схемы кодирования по алгоритму VSELP.

Рисунок 2.
Емкость частотного канала iDEN

Диапазон частот

Система на базе технологии iDEN работает в стандартном для Америки и Азии транкинговом диапазоне 806-825/851-870 МГц. Отметим, что с недавних пор и в России часть этого диапазона, а именно 815-820/860-865 МГц, также отведена под системы транкинговой радиосвязи (рис. 3).

Рисунок 3.
Диапазон частот, отведенный для системы iDEN в России: мобильные терминалы (МТ) 806-821 МГц; базовые станции (БС) 851-866 МГц

При разработке технологии iDEN Motorola хотела добиться максимально эффективного использования частотного ресурса, по крайней мере не уступающего существующим реализациям стандарта CDMA. Поскольку iDEN обеспечивает одновременную передачу по каждому частотному каналу шириной 25 кГц шести речевых сигналов, то в 1 МГц спектра можно разместить 240 таких каналов. Для сравнения - при ширине полосы 1 МГц аналоговые и цифровые системы транкинговой связи способны поддерживать не более 80, аналоговые системы сотовой связи - от 30 до 40, а системы в стандарте GSM - 40 голосовых каналов (рис. 4).

Рисунок 4.
Сравнение эффективности использования спектров. В 1 МГц спектра можно разместить голосовых каналов (ГК): аналоговых транкинговых систем - 40/80; аналоговых сотовых систем - 33-40; GSM - 40; TETRA - 160; iDEN - 240

Структура системы iDEN

Система на базе технологии iDEN состоит из двух основных компонентов: БС и центральной инфраструктуры. (рис. 5). Инфраструктура iDEN организована так, чтобы максимально использовать функциональные возможности БС, поэтому наиболее важным функциональным элементом является базовая станция EBTS Enhanced Base Transceiver System. В состав EBTS входит интегрированный контроллер узла (iSC), до 20 базовых радиостанций (BR) типа omni или 24 секторных BR, усилитель и передатчики радиосигнала, синхронизирующий приемник, антенны БС.

Рисунок 5.
Структура системы на базе технологии iDEN: * обеспечивают телефонную связь; ** обеспечивают радиосвязь; *** предоставляются оператором системы; DACS (Digital Access Crossconnect Switch) - коммутатор цифрового доступа; IWF (Interworking Function) - интерфейс передачи данных с ТфОП; VMS (Voice Mail System) - голосовая почта

EBTS обеспечивает взаимодействие между системой и абонентскими устройствами, поддерживает передачу голосового трафика на нескольких частотных каналах, а также выполняет целый ряд управляющих функций, например разделение трафика радио- и телефонной связи, синхронизацию работы БС и абонентских терминалов, контроль уровня радиосигнала и др. Многофункциональность EBTS позволяет существенно снизить нагрузку на компоненты центральной инфраструктуры, в первую очередь на MSC (Mobile Switching Center). Передатчик EBTS поддерживает не более 144 голосовых каналов для одного узла системы.

Основная функция BSC (Base Site Controller) - управление связью при перемещении абонентских терминалов от одной зоны покрытия к другой (handover). Каждый BSC способен поддерживать до 30 зон, выполняя весь комплекс действий по концентрации трафика, поступающего от узловых станций, и его распределению по соответствующим зонам.

Транскодер XCDR выполняет прямое и обратное преобразование аудиосигнала формата VSELP в цифровой формат PCM.

Пакетный коммутатор MPS (Metro Packet Switch) состоит из коммутатора и дупликатора пакетов. Он передает голосовые пакеты, поступающие в режиме dispatch radio, и управляющую информацию от EBTS к DAP и обратно.

Система диспетчеризации DAP (Dispatch Application Processor) выполняет управление групповым и персональным вызовом, сигнализацией вызова и другие функции. При большом числе абонентов системы возможно создание кластеров из четырех DAP.

Блоки регистрации местоположения абонента HLR/VLR (Home Location Register)/Visited Location Register) обслуживают мобильную телефонную связь. В HLR хранится полная информация обо всех абонентских терминалах, зарегистрированных в различных географических сегментах системы. VLR содержит сведения о перемещении абонентских устройств и предоставляет системе информацию, необходимую для выполнения роуминга. Отметим, что в системе iDEN нет роуминга в том смысле, в котором он понимается в сотовых системах, поскольку для связи географически удаленных сегментов системы используются не ТфОП, а выделенные каналы E1.

Коммутатор MSC (Mobile Switching Center) обеспечивает интерфейс между ТфОП и мобильными телефонами iDEN, выполняя типичные функции подобного коммутатора, а также управляет передачей при перемещении абонентов из зоны, контролируемой одним BSC, в зону, контролируемую другим. Если сеть iDEN охватывает значительную территорию, в ней могут быть установлены несколько MSC. Функции MSC системы iDEN полностью идентичны функциям коммутатора сотовой сети стандарта GSM.

Основным управляющим модулем системы является OMC (Operation Maitenance Center), который обеспечивает конфигурирование системы, управление аварийными ситуациями, сбор статистических данных о работе системы и ряд других функций управления.

Служба коротких сообщений SMS (Short Message Service) поддерживает все функции передачи текстовых сообщений, включая текстовые извещения о наличии сообщений для данного абонента (voice mail).

iDEN MicroLite

В настоящее время компания Motorola завершает разработку системы iDEN MicroLite, которая представляет собой "малую" систему на базе iDEN и ориентирована на обслуживание от нескольких сотен до нескольких тысяч абонентов. При сохранении всех технологических решений iDEN, применении того же абонентского оборудования и базовых станций эта система отличается, в первую очередь, максимальным количеством частотных каналов (их 40).

Основное технологическое отличие iDEN MicroLite от iDEN состоит в организации центральной инфраструктуры системы. В системе iDEN MicroLite она реализована на одной компьютерной платформе стандарта Compact PCI (вариант платформы PCI для промышленных компьютеров), работающей под управлением ОС реального времени Neutrino фирмы QNX Labs.

Первая версия iDEN MicroLite будет обеспечивать два вида связи - групповую (индивидуальную) радиосвязь и мобильную телефонную связь. В следующих версиях в систему будут добавлены службы передачи коротких сообщений и коммутируемой/пакетной передачи данных. Максимальное количество базовых станций, которое способна поддерживать центральная инфраструктура первой версии системы равно 5, в дальнейшем оно будет увеличено до 8-10.

При необходимости перехода от iDEN MicroLite к полной системе iDEN требуется новая установка центральной инфраструктуры системы, однако модифицировав соответствующее ПО, можно использовать абонентские терминалы и имеющееся оборудование БС.

Поставки системы iDEN MicroLite начнутся во II квартале 1999 г. Техническая проработка проектов систем iDEN MicroLite предполагается с III квартала 1998 г.

Области применения iDEN

Технология iDEN ориентирована на создание систем типа SMR (Shared Mobile Radio), т. е. коммерческих сетей, предоставляющих интегрированные услуги организациям и частным лицам. Чтобы обеспечить связь отдельных подразделений и групп сотрудников, для каждого корпоративного пользователя системы создается так называемый "флот" - виртуальная частная сеть в рамках сети организации. Внутри флота могут создаваться разные группы, соответствующие подразделениям компании (максимальное число групп в одном флоте - 255). Возможность случайного или преднамеренного вторжения абонентов в чужие флоты абсолютно исключена. Члены флота могут находиться в разных географических регионах, перемещаться из одного города в другой.

Таким образом, организация может построить собственную мобильную телекоммуникационную систему, полностью эквивалентную сети данной организации. При этом ей не нужно приобретать оборудование и строить антенны, а также тратить несколько месяцев на установку и отладку системы. Все что необходимо сделать - стать корпоративным пользователем уже существующей системы iDEN.

Где и когда

Первая коммерческая система на базе технологии iDEN развернутая в США компанией NEXTEL в середине 1994 г., сейчас является общенациональной. Она насчитывает около 4500 БС и около 2 млн абонентов. В юго-западных штатах США существует другая сеть на базе технологии iDEN, оператором которой является энергетическая компания Southern Co. Кроме того, в юго-западных провинциях Канады компания Clearnet тоже предоставляет услуги связи в сети iDEN, состоящей из 320 БС.

Что касается Латинской Америки, сети iDEN уже существуют в Боготе (Колумбия) и Буэнос-Айресе (Аргентина). Они строятся в Сан-Пауло и Рио-де-Жанейро (Бразилия), а также в Мехико (Мексика). В ближайшее время запланировано развертывание систем на базе iDEN в Перу, Венесуэле и Чили, а также расширение систем в Колумбии и Аргентине.

В Азии системы iDEN эксплуатируются в нескольких странах: более двух лет такие системы работают в Токио и Осаке (Япония), около года - в Сингапуре. Существуют системы в Китае, Южной Корее и на Филиппинах. Ведется строительство в Индонезии. На ближнем Востоке общенациональная сеть iDEN развернута в Израиле, начато строительство таких систем в Марокко и Иордании.

Каждая из перечисленных систем расчитана на обслуживание десятков тысяч абонентов.

Модульный принцип организации системы обеспечивает различные ее реализации. Например, первоначально сеть iDEN может быть развернута как чисто транкинговая система, а затем, по мере необходимости, к ней добавятся возможности мобильной телефонии, передачи текстовых сообщений и данных. По мнению разработчиков системы, сегодня iDEN - одна из немногих отработанных в коммерческой эксплуатации технологий, обеспечивающих предоставление всего комплекса услуг мобильной связи.

Андрей Александрович Денисов - менеджер компании Motorola по системе iDEN в регионе Восточной Европы и бывшего СССР. С ним можно связаться по адресу: [email protected] и факсу 785-0160

Абонентские терминалы iDEN, подобно системе GSM, используют SIM-карты. В части интерконнекта используются алгоритмы управления сигналлинга GSM, что значительно упрощает роуминг с сотовыми сетями. Выпускаются профессиональные (индустриальные) терминалы (R370, R470, R765, R765IS) и коммерческие, серии «i». Есть дуалмодовые модели iDEN/GSM, iDEN/CDMA. В некоторых терминалах реализована функция «Direct Connect», позволяющая соединять абонентов сети напрямую, минуя базовые станции, на локальных территориях в частотном диапазоне SMR (Specialized Mobile Radio) 800 МГц. В настоящий момент производством терминалов заняты две компании Motorola и RIM. В 2010 году был презентован Android терминал с сенсорным экраном i1.

Это чудо — то же работает как радио.

В 2005 году представлено дальнейшее развитие стандарта, позволяющее, комбинируя тайм-слоты четырёх физических каналов, получить скорость передачи данных до 100 кБит/с. Апгрейд получил название WiDEN (Wideband Integrated Digital Enhanced Network).
По состоянию на 2010 г., наряду с системами

Практически в каждом салоне сотовой связи, витрины которого ломятся от мобильных телефонов, находится охранник с обязательной громоздкой рацией. Тут невольно задаешься вопросом: «Почему этот человек не использует для службы простой мобильный телефон?»

Сегодня наряду с привычной сотовой связью существуют так называемые системы профессиональной мобильной радиосвязи (ПМР ) (Professional Mobile Radio - PMR ), или транкинговой подвижной радиосвязи . Они занимают свой сектор рынка оборудования мобильной связи для корпоративных пользователей, различных ведомств и социальных служб, выполняя функции, необходимые именно этим пользователям.

Транкинговая подвижная радиосвязь (от англ. trunking - предоставление свободных каналов, trunk - магистральная линия связи) - система двусторонней подвижной радиосвязи, которая использует диапазон ультракоротких волн. На практике система ПМР устроена аналогично сотовой: пользовательские терминалы и базовые станции (БС), оборудование для увеличения дальности связи - ретрансляторы и контроллер, который управляет работой станции, обрабатывает каналы ретрансляторов (коммутирует их) и обеспечивает выход на городскую телефонную сеть. Сети транкинга могут быть однозоновыми (содержать одну БС) или многозоновыми (несколько БС). Существуют аналоговые и цифровые системы транкинговой связи.

Лучше чем сотовый?

Чем же транкинговая связь отличается от сотовой, если, не считая разницы между пользовательским терминалом (рацией/телефоном), все устроено одинаково?

Сотовая связь позиционируется как «телефон в кармане», а транкинговая предназначена для решения узкого круга профессиональных задач. Сотовая связь, к примеру, предоставляет разнообразные мультимедийные услуги, однако нефтяник, дежурящий на буровой платформе в Балтийском море, или спасатель МЧС навряд ли уповают на возможность загрузить новый альбом Мадонны. Транкинговую связь выбирают такие организации, как МЧС, охранные агентства, таксомоторные компании и др. Для рядовых же офисных работников вполне подойдет вариант «сотовый телефон + корпоративный тарифный план».

Система связи, которой пользуются профессионалы, должна поддерживать такие функции, как:

Осуществление моментальной связи (0,2-0,5 сек) внутри группы абонентов, которая может быть задана заранее;

Возможность перераспределения участников групп во время сеанса связи;

Система приоритетов вызовов (мобильный оператор не делает различий между абонентами);

Сохранение связи даже при выходе из строя базовой станции;

Передача широковещательного сигнала абонентам сети;

Возможность быстро переконфигурировать сеть.

Эти требования невыполнимы в системах сотовой связи, зато в полной мере поддерживаются транкинговыми системами. Стоит отметить, что участники рынка мобильной связи сложа руки не сидят и предлагают услугу Push-To-Talk с возможностью установления группового вызова и быстрым установлением соединения. Однако новация в любом случае не отвечает требованиям профессионалов. Подробнее о Push-To-Talk можно прочесть здесь.

Мы предлагаем сравнительную таблицу на примере двух версий TETRA - популярного стандарта цифровой транкинговой радиосвязи, и GSM-сетей.

Режимы и функциональные возможности, стандарты связи TETRA (Rl) TETRA (R2) GSM Групповой вызов + + +/- Широковещательный вызов + + - Аварийный вызов + + +/- Приоритетный вызов + + +/- Приоритетный доступ + + - Дуплексная связь + + + Задержанный вызов + + - Задержанное вхождение в связь + + - Режим прямой связи (без базовой станции) + + - Режим - «только прием» - + - Возможность расширения зоны связи - + - Выбор зоны + + - Статусные сообщения + + - Передача коротких текстовых сообщений + + + Вызов диспетчера + + - Предоставление по запросу абонента широкой полосы + + - Возможности шифрования сигнала и радиоинтерфейса + + +/- Одновременная передача речи и данных + + + Высокоскоростная передача данных - + + Избирательное прослушивание абонентов диспетчером + + - Дистанционное прослушивание акустической обстановки + + - Динамическая перегруппировка + + - От стимпанка к киберпанку

Профессиональная аналоговая связь существовала чуть ли не с начала XX века и за это время успела немало измениться, придя к цифровым технологиям с внушительным багажом.

Каждому известно, что радиосвязь началась в 1895 году, когда А.Попов (и только годом позже Г. Маркони) создал первый приемник. С 1897 по 1915 гг. Г. Маркони организует первые связные компании и разворачивает производство оборудования; появляются регламенты радиосвязи, в том числе по распределению частот между различными службами. Зародилась профессиональная радиосвязь в пероид с 1915 по 1950-х гг.

В первой половине 20-века исследовались возможности осуществления связи на разных длинах волн. До 1920 г. связь осуществляли с использованием волн длиной от сотен метров до десятков километров. В 1922 г. стало известно свойство коротких волн распространяться на любые расстояния, преломляясь в верхних слоях атмосферы и отражаясь от них, - идеальное средство для осуществления дальней связи. 1930-е годы стали временем метровых волн; а 1940-е - дециметровых и сантиметровых, распространяющихся прямолинейно на 40-50 км в пределах прямой видимости. Популяризация радиосвязи напрямую зависела от достижений техники. До появления миниатюрных полупроводников приёмники оставались громоздкими и в лучшем случае умещались в чемодан, что накладывало определённые ограничения.

Историю сетей профессиональной радиосвязи обычно делят на ступени. Первым этапом считаются сети конвенционального типа (от англ. conventional - обычный, традиционный). Их небогатые возможности следующие: симплексный режим работы (нажал на кнопку - задал вопрос - отпустил кнопку - получил ответ - нажал на кнопку - ...), совершение индивидуальных и групповых вызовов (до нескольких десятков абонентов) В конвенциональных системах канал связи (частота) жестко закрепляется за определенной группой абонентов. При этом гарантируется высокая оперативность связи (необходимо только настроить частоту), но служит причиной малой пропускной способности сети (частот мало).

Второй этап - транкинговые сети. Подобные сети сделали возможным обслуживание до нескольких сотен абонентов и позволили более эффективно использовать радиочастотный ресурс. Подобные системы связи стали системами с общим доступом абонентов к частотному диапазону, в отличие от конвенциональных систем. Это обеспечивает повышенную пропускную способность и большую зону охвата.

Многозоновые транкинговые сети стали третьим этапом . Зона обслуживания в них увеличилась еще больше за счет нескольких базовых станций. Количество обслуживаемых абонентов стало практически неограниченным, появилась система приоритетов вызовов, возможность дуплексного режима вызова (кнопку жать не требуется, связь аналогична телефонной с поправкой на куда большую скорость совершения вызова), выход на телефонные сети общего пользования, передача данных.

Симплекс, полудуплекс и дуплекс

Нет, это не названия сиквелов к комедии "Дуплекс", в которой снялись голливудские звёзды Бен Стиллер и Дрю Берримор. В заголовок вынесены имена трёх базисных режимов беспроводной радиосвязи.

1. Симплексная связь использует одну частоту - для приёма и передачи. Возможен только обмен репликами. По причине ограничений, которые накладывает физика, пользоваться этим, самым экономичным видом беспроводных радиокоммуникаций, получится на дистанции не более 5 км. Для устойчивого сигнала крайне желательна открытая местность. Связь осуществляется посредством пользовательских терминалов.

2. Полудуплексная связь также задействует две частоты, однако общаться придётся, как и в симплексном режиме. Базовая станция (БС) на одной частоте постоянно принимает сигналы абонентов, а затем на другой частоте транслирует то, что приняла. Рация использует для приёма частоту, на которой вещает БС, и должна содержать радиочастотный переключатель. Принцип полудуплекса лежит в основе недорогих сетей, которые связывают десятки абонентов в различных точках города и открытой местности.

3. Дуплексная связь задействует две частоты - одну на приём, другую- на передачу и предназначена, чтобы вести привычный диалог. Естественно, задействованы базовые станции для ретрансляции сигналов. Аналоговые системы дуплекса требуют два канала (4 радиочастоты) для соединения абонентов. Терминал оснащают габаритным дуплексным фильтром, чья роль дать приёмнику и передатчику одновременный доступ к антенне. Цифровой дуплекс реализован иначе и не требует громоздкого фильтра - в каждый момент времени аппарат абонента принимает либо передаёт. К примеру, в стандарте TETRA переключение происходит 18 раз в секунду.

Современные цифровые транкинговые сети (ЦТС ) являются вершиной эволюционной цепочки профессиональной связи. Помимо возможностей, доступных пользователям аналоговых систем, добавляются надёжная защита от несанкционированного доступа (к тому же прослушивание переговоров с помощью аналоговых устройств становится невозможным) и пакетная передача данных (доступ в Интернет). Аппарат абонента опознается с помощью различных идентификационных механизмов или SIM-карт. По сути, цифровые транкинговые системы являются универсальными сетями связи, обеспечивающими конфиденциальность контактов абонентов, и способны к одновременной передаче больших потоков данных по каналам связи, будь то данные телеметрии или видеоинформация (в последних редакциях стандартов подобные возможности предусматриваются).

Существует большое количество различных стандартов транкинговых систем подвижной радиосвязи, различающихся по многим признакам. В нашей стране, как и во всем мире, до сих пор распространены аналоговые системы различных версий и стандартов. Однако в силу своей моральной устарелости они не столь интересны к рассмотрению, сколько их цифровые собратья. Пятерку самых популярных и признанных во многих странах мира стоит рассмотреть подробней.

EDACS (Enhanced Digital Access Communication System)

Фирма Ericsson (Швеция) раньше других (пока ее не купила Sony в 1980-х годах) озаботилась проблемой устаревания аналоговых технологий и недостаточной степенью защищенности переговоров в подобных системах и занялась разработкой корпоративного закрытого стандарта EDACS (Enhanced Digital Access Communication System). Изначально стандарт предусматривал передачу речи по аналоговым протоколам, позднее стандарт модифицировали и появилась цифровая версия системы под названием EDACS Aegis . Системы EDACS работают на частотах 138-174 МГц, 403-423 МГц, 450-470 МГц и 806-870 МГц; сеть может быть раскинута на более чем 16000 абонентов. В России в этом стандарт не слишком популярен в силу его закрытости и скорого устаревания (фактически это цифровой стандарт для передачи аналоговых сигналов). Все права принадлежат разработчику, и просто так выпускать оборудование вам не позволят. Вдобавок Ericsson прекратила поставки оборудования для развертывания новых сетей этого стандарта и занимается только поддержкой существующих.

Технология iDEN (integrated Digital Enhanced Network ) - закрытый корпоративный стандарт, разработка которого была начата компанией Motorola в начале 1990-х годов. В 1994 г. в США компанией NEXTEL на базе этой технологии развернута первая сеть коммерческого применения. Сегодня подобные сети развернуты во многих странах Северной и севера Южной Америки, Азии. Сегодня подписчиками iDEN являются более 3 000 000 человек (90% из них приходится на США). Такую популярность iDEN обрела благодаря тому, что является неким компромиссом между транкинговыми и сотовыми системами (предоставляет возможности отправки сообщений, факсимильной связи, передачи данных по протоколу TCP/IP со скоростью до 36 кбит/с, невысокая стоимость). Каждой организацией, использующей стандарт iDEN, может быть создано до 10 000 виртуальных сетей, в каждой из которых может быть до 65 500 абонентов. iDEN использует частотный диапазон 805-821/855-866 МГц. В России систем iDEN нет - вероятнее всего, из-за неудобства использования подобного диапазона частот при решении задач, на которые рассчитаны системы профессиональной связи. Примечательно, что компанией Motorola выпускаются различные iDEN-аппараты с функциями современных мобильных телефонов. К примеру, Motorola ic502 - CDMA/iDEN-телефон с GPS и Motorola i290 с MP3-плеером.

Tetrapol PAS (Tetrapol)

Разработан французской фирмой Matra Communication . Создание этого закрытого стандарта было начато в 1987 г. фирмой Matra Communications по заказу французской жандармерии. Сеть связи стандарта Tetrapol функционирует на половине территории Франции с 1994 г. и обслуживает более 15 000 абонентов. Системы связи стандарта Tetrapol работают начиная с частоты 70 МГц и имеют потолок функционирования в 520 МГц, что не способствует популяризации в других странах, где подобным системам традиционно могут отводиться другие диапазоны частот. В России созданы опытные зоны функционирования сети Tetrapol.

TETRA (Terrestrial Trunked Radio)

TETRA - открытый стандарт профессиональной радиосвязи, разрабатываемый с 1994 года ETSI (European Telecommunications Standards Institute - Европейский институт телекоммуникационных стандартов). TETRA означает Terrestrial Trunked Radio - «наземное транкинговое радио». Изначально, пока стандарт не обрел популярность за пределами Европы, TETRA расшифровывалось как Trans-European Trunked RAdio - «трансъевропейское транкинговое радио». В Европе ПМР стандарта TETRA работает в диапазонах частот 380-385/390-395 МГц, 410-430/450-470 МГц. В Азии - 806-870 МГц.

В спецификациях TETRA значится как открытый стандарт, а значит каждый, кто пожелает производить аппаратуру для связи, может не задумываться о проблемах совместимости с оборудованием других компаний и о дележе авторских прав. Чтобы выпускать продукцию, поддерживающую этот стандарт, необходимо вступить в организацию MoU TETRA - Меморандум о содействии стандарту TETRA. Nokia , Motorola , RohdeSchwarz и другие крупные компании, занимающиеся производством оборудования для связи, поддерживают этот стандарт. Сети TETRA развернуты практически по всей Европе, в странах Азии, Африки и Южной Америки. TETRA Release 2 - новая версия стандарта, которая позволяет осуществить плотную интеграцию с мобильными сетями третьего поколения и значительно повысить скорость передачи данных. Проект по развертыванию сетей данного стандарта в России называется «Тетрарус». О многом говорит хотя бы тот факт, что «в рамках Федеральной целевой программы «Развитие г. Сочи как горноклиматического курорта до 2014 г.» в местах проведения спортивных соревнований и по всему Краснодарскому краю будет функционировать радиосвязь стандарта TETRA».

APCO Project 25 (APCO 25)

Открытый стандарт APCO 25 создан организацией Association of Public S afety Communications Officials- international -Ассоциацией представителей служб связи органов общественной безопасности. Стандарт создавался и совершенствовался (построение радиоинтерфейса, протоколы шифрования, методы речевого кодирования) в период с 1989 по 1995 гг. Одним из основных преимуществ APCO 25 является то, что он позволяет работать в любом из диапазонов частот, доступных для систем подвижной радиосвязи: 138-174, 406-512 или 746-869 МГц. В одну сеть могут быть объединены до двух миллионов человек и до 65 тысяч групп. С 2003 г. в Санкт-Петербурге функционирует подобная сеть на несколько сотен абонентов в целях МВД России.

Транкинг может использовать не только для связи:

Новейшая система транкинга JRC Trunked Radio System с функцией автоматического определения местонахождения автомобиля на основе GPS и стандартов MPT 1327/1343. Кроме, собственно, обеспечения коммуникаций между абонентами, стандарт обеспечивает автоматическую передачу данных о местонахождении и статусе каждой машины на терминал в центре управления.

Пример двух способов организации сети транкинга:

Более полно характеристики стандартов отражены в таблице:

Функциональные возможности, стандарты цифрового транкинга APCO 25 EDACS IDEN TETRA Tetrapol Индивидуальный, групповой, широковещательный вызовы + + + + + Выход на ТфОП + + + + + Полнодуплексные абонентские терминалы - + + + - Передача данных и доступ к базам данных + + + + + Режим прямой связи + + ? + + Автоматическая регистрация мобильных абонентов + + + + + Персональный вызов + - + + + Доступ к IP-сетям + + + + + Передача статусных сообщений + + + + + Передача коротких сообщений + - + + + Передача данных о местоположении абонента от приемника GPS ? + ? + + Факсимильная связь + - + + + Возможность установки открытого канала? - - + + Множественный доступ с использованием списка абонентов + - + + + Режим ретрансляции сигналов + ? ? + + Режим «двойного наблюдения» ? - ? + + Приоритет доступа/вызова + + - + + Динамическая перегруппировка + + - + + Избирательное прослушивание + + - + + Дистанционное прослушивание? - - + + Идентификация вызывающей стороны + + - + + Вызов, санкционированный диспетчером + + - + + Передача ключей по радиоканалу (OTAR) + - - + + Имитация активности абонентов - - - - + Дистанционное отключение абонента + ? - + + Аутентификация абонентов + ? - + +

В России, одновременно с внедрением, успешным использованием и развитием цифровых сетей различных транкинговых стандартов, широко распространены аналоговые системы на базе старого МРТ1327 . И это отнюдь не плохо. Цифровой транкинг удобен там, где нужна не только оперативная связь, но и передача данных и телефония. Часто заказчикам оказывается вполне достаточно симплексной голосовой связи и функции отправки сообщений. Использование аналоговых систем экономит время и деньги.

В целом же ситуация с профессиональной мобильной радиосвязью напоминает переход от использования сотовых сетей второго поколения стандарта GSM к стандартам 3G . Сотовые сети, несмотря на темпы их роста, в ближайшем будущем не смогут полностью заменить сетей профессиональной радиосвязи по причине того, что выполняют другие функции.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Федеральное агентство связи Государственное общеобразовательное учреждение Высшего профессионального обучения “Сибирский государственный университет телекоммуникаций и информатики” (филиал)

Хабаровский институт инфокоммуникаций Факультет заочного обучения

Курсовой проект

по дисциплине: Системы радиосвязи с подвижными объектами

на тему: Проектирование транкинговой сети связи

Выполнила: студентка 4 курса ФЗО

специальности МТС (уск.)

Малышева В.В.

Хабаровск 2010

Введение

3.4 Определение числа РЧК при наличии нескольких зон радиопокрытия с выходом на АТС через одну базовую станцию

Литература

транкинговая сеть радиосвязь

Задан тип застройки района обслуживания. Определить рабочий диапазон частот исходя из типа застройки.

1. Определить среднее значение размеров зон обслуживания исходя из типа застройки района, мощности радиопередатчика, высоты подвеса антенн и диапазона рабочих частот.

2. Произвести частотное планирование сети.

3.1 Разработать план размещения базовых станций с учётом топологии местности.

3.2 Определение каналов для каждой БС.

3.3 Расчёт зоны обслуживания и зоны помех для каждой БС.

4. Расчёт дальности радиосвязи.

5. Составить схему организации связи.

6. Составить структурную схему сети исходя из количества БС.

7. Составить структурную схему БС, определив тип базового оборудования.

8. Составить структурную схему однозоновой или многозоновой транкинговой системы.

9. Составить структурную схему управления в транкинговой системе.

Исходные данные для выполнения курсового проекта (вариант № 6):

Тип застройки: среднеэтажная застройка

Вид объекта: мобильные объекты

Мощность передатчика: Рпер = 30 Вт

Чувствительность приёмника: Ес = 0,5 мкВ

Высота подвеса антенны: h = 25м

Количество пользователей: 325

Перепады высот: Hmax = 250м, Hmin = 50м

Коэффициент усиления антенны: G = 7 дБ

Коэффициент тяготения: G = 0,35

Затухание в АФУ: 10 дБ

Среднее число вызовов: С = 4,4

Средняя продолжительность разговора: tср = 28 сек

Плотность транспорта: V = 7 маш/км2

Длина фидера передатчика БС: lперБС = 17 м

Длина фидера передатчика АС: lперАС = 1,1 м

Потери в фидере: ДРф = 2,5 дБ

Потери в комбайнере: ДРк = 4 Дб

Также исходные данные приведены в таблице 1.

Таблица 1

Параметры

№ базовой станции

Введение

В настоящее время существует целый ряд систем сухопутной подвижной радиосвязи:

Системы персонального радиовызова (пейджинг);

Системы диспетчерской (оперативной) радиосвязи;

Транкинговые системы радиосвязи;

Системы сотовой телефонной радиосвязи.

Транкинговые системы радиосвязи стали наиболее успешной реализацией развития систем оперативной мобильной связи, которые обладают высокой эффективностью при интенсивном обмене оперативной информацией для большого количества абонентов, которые могут объединяться в группы по оперативно-функциональным признакам. Предоставляемый транкинговыми системами набор сервисных услуг весьма широк и практически включает в себя все их многообразие: от передачи данных до радиотелефонии и от простого оповещения до автоматического определения местоположения подвижных объектов.

Транкинговые системы радиосвязи - это многоканальные системы, в которых абоненту по его требованию автоматически по заданному алгоритму предоставляется радиоканал и другие ресурсы системы, чем обеспечивается высокая эффективность использования частотного ресурса.

По принципу организации радиоканала все транкинговые системы можно разделить на три условные группы:

Аналоговые - системы радиосвязи с селективным вызовом (DTMF, Select 5 и т.п.);

Аналого-цифровые - системы, в которых передача служебной информации при установлении соединения осуществляется в цифровом, а передача в аналоговом режиме (SmarTrunk II, MPT 1327, LTR, EDACS);

Цифровые - EDACS ProtoCall, TETRA, Astro.

По наличию в системе канала управления:

Системы, имеющие канал управления на момент установления соединения - SmarTrank II, Selekt 5 и др.;

Системы с постоянным каналом управления, формируемым различными способами - TETRA, MPT 1327, LTR и др.

По способу предоставления канала связи:

Постоянный на весь сеанс связи - SmarTrank II, MPT 1327 и др.;

Предоставляемый только для передачи сообщения и меняется в течение сеанса связи - EDACS, TETRA.

По принципу организации управления базовым оборудованием: децентрализованный - SmarTrank II и др.; централизованный - МРТ 1327, EDACS, TETRA и др. Кроме того, все протоколы транкинговых систем можно разделить на 2 класса:

1. Открытые протоколы (MPT 1327, TETRA);

2. "Фирменные" протоколы (LTR, SmartNet, SmartZone, EDACS, ESAS и др.).

Открытые протоколы доступны для любого производителя. Эти протоколы рекомендованы для использования во многих странах. Системы с такими протоколами производятся многими фирмами, оборудование ввиду массовости производства и высокой конкуренции, как правило, дешевле, чем в специализированных системах.

В России наиболее известными являются следующие протоколы транкинговых систем: SmarTrank II, MPT 1327, LTR, EDACS и SmartZone. Поэтому в курсовом проекте, при выборе типового оборудования, за основу принят протокол МРТ 1327.

Протокол МРТ 1327 предназначен для создания крупных сетей оперативной радиосвязи с практически неограниченным числом абонентов. Важнейшими достоинствами протокола МРТ 1327 являются:

Возможность построения многозоновых систем национального масштаба с большим количеством базовых станций, что позволяет «покрывать связью» значительные территории;

Широкий выбор абонентского и базового оборудования МРТ 1327: его выпускают многие фирмы - Motorola, Tait Electronics, Fylde Microsystems, Bosch, Philips, Nokia, Rohde & Schwarz и др.;

Протокол не привязан к определённым частотам, что позволяет выбирать их в зависимости от наличия плана частот и соответствующего разрешения ГКРЧ;

Стандартизация компонентов системы позволяет упростить и удешевить эксплуатацию, обслуживание, развитие и объединение сетей в более крупные системы;

Обеспечивается возможность экономичной передачи коротких сообщений;

Протоколы позволяют строить эффективные сети сбора информации от датчиков состояний и аварий;

Гарантированная модернизация и техобслуживание;

Осуществление плавного перехода на сигнальные протоколы нового поколения (от аналоговых систем к цифровым системам стандарта TETRA).

Возможности, предоставляемые абонентам транкинговых систем протокола МРТ 1327:

Индивидуальный вызов мобильной радиостанции;

Вещательный вызов, при котором вызываемые абоненты могут только слушать информацию;

Вызов группы абонентов;

Приоритетный и аварийный вызовы;

Вложенный вызов, позволяющий включать других абонентов в существующий разговор;

Соединение с абонентами городской и ведомственной телефонных сетей;

Переадресация пользователем радиостанции входящих вызовов на другого абонента;

Постановка вызовов на очередь;

Защита от несанкционированного доступа.

Транкинговые системы стандарта МРТ 1327 поддерживают режим обмена данными, который обеспечивает передачу: статусных сообщений; коротких до 25 символов; расширенных до 88 символов; сообщений неограниченной длины.

1. Определение рабочего диапазона частот

В данном курсовом проекте задан тип застройки средне этажный, следовательно, можно предположить, что тип местности городской. Для городских районов оптимальным являются диапазоны 300, 450 и 900 МГц. Примем диапазон равный 300 МГц.

2. Определение среднего значения размеров зон обслуживания

Среднее значение размеров зон обслуживания зависит от мощности радиопередатчика, высоты подвеса антенн, типа застройки, района обслуживания, типа абонентской станции и диапазона рабочих частот.

Для среднеэтажной застройки значение ресурсов зон обслуживания мобильных объектов равно 15-30км.

3. Частотное планирование сети

Частотное планирование сети производится на основании расчета зоны уверенной связи для заданного качества приема. При этом надо использовать принцип неравномерного распределения радиочастотного ресурса по территории пропорциональной концентрации абонентов: применять в локальных сетях транкинговой радиосвязи малоканальное оборудование, обеспечивающего обслуживание от 100-200 до 1500-2000 абонентов.

3.1 Разработка плана размещения базовых станций

При разработке плана размещения БС руководствуются следующим: приблизительный радиус зоны обслуживания БС для 300 МГц - 10-15км. Исходя из этого, производится предварительное размещение БС с учетом полного или частичного покрытия зоны обслуживания и использование одно - или многозоновой систем. Определение числа ретрансляторов для БС производится исходя из распределения абонентской нагрузки в пределах зоны обслуживания из расчета 80-100 абонентов на канал.

3.2 Определение числа радиочастотных каналов при одной зоне обслуживания без выхода на АТС

При расчете числа РЧК предполагается, что весь трафик на сети создается только радио абонентами и полностью распределяется между ними, т.е. тяготение радио абонентов к абонентам АТС. Для определения емкости пучка РЧК требуется знать:

N - число радио абонентов;

Счнн - среднее число вызовов в ЧНН, создаваемых одним радио абонентом;

Tср - средняя продолжительность разговора.

где - нагрузка, поступающая от одного абонента в ЧНН, равная:

Зная, что среднее число вызовов в ЧНН, создаваемых одним радиоабонентом, равно 4,4, а средняя продолжительность разговора:

tср = 28 сек = 0,007778 часа,

определяем нагрузку, поступающую от одного абонента в ЧНН:

При постоянной блокировки вызова:

при заданных N = 325,

по графику (рисунка 1) определяем, что требуемое число радиочастотных каналов:

V = 13 каналов.

А удельная нагрузка, поступающая от 250 абонентов, равна:

3.3 Определение числа РЧК при одной зоне обслуживания с выходом на АТС

В некоторых случаях радио абоненты транкинговой сети могут иметь выход на АТС. В этом случае часть поступающей нагрузки составляет нагрузка между системой и АТС телефонной сети. На рисунке 2 представлена схема обслуживания базовой станции одной зоны с АТС.

По заданию задан коэффициент тяготения:

абонентов сети к АТС. Определим общую нагрузку, создаваемую всеми абонентами, с учетом коэффициента тяготения по следующей формуле:

По графику (рисунок 3) для вычисленного значения:

Ае = 4 Эрл,

найдем емкость пучка каналов V1 для обслуживания нагрузки между системой и АТС.

Емкость пучка каналов V1 = 11 каналов.

3.4 Определение числа РЧК при наличии нескольких зон радио покрытия с выходом на АТС через одну базовую станцию

На рисунке 4 представлена схема при наличии нескольких зон радио покрытия с выходом на одну базовую станцию. Значения, N и G (нагрузка, поступающая от одного абонента в ЧНН, число радио абонентов и коэффициент тяготения) для БС-1, БС-2, БС-3 и БС-4 указаны в таблице 1.

При наличии нескольких базовых станций (БС), одна из них будет главной, которая имеет выход на АТС по кабельным линиям связи. Остальные БС связаны с главной по каналам радиорелейных линий связи. Каждая БСi имеет Ni - количество радио абонентов, причем каждый из них создает нагрузку i. Для каждой БСi задан коэффициент тяготения к АТС - Gi. Трафик каждой БСi поступает к АТС через главную БС. Необходимо рассчитать число радиоканалов:

В каждой зоне VБС;

Между главной БС и АТС - V1;

Радиорелейной системы, связывающей БСi с главной - Vрр.

Рассчитаем необходимые значения по следующему алгоритму:

1. Определим общую поступающую нагрузку для каждой БСi по формуле:

2. По графику (рисунок 1) определяем число РЧК по заданным значениям i и Ni:

3. Рассчитаем поступающую нагрузку Ае между каждой БСi и АТС с учетом коэффициента тяготения:

4. Определим общую поступающую нагрузку от БС к АТС:

5. По графику (рисунок 3) определяем емкость пучка каналов V1 между главной БС и АТС по найденному значению Ае общ.: V1 = 9 каналов.

6. Определим по расчетным нагрузкам Аei для каждой БСi число радиоканалов радиорелейной системы Vрр, связывающей каждую БС с главной. Определение Vpp производиться по графической зависимости, представленной на рисунке 5.

4. Расчет зоны обслуживания базовой станции

Для определения зоны обслуживания БС произведем следующие расчеты:

1. Определим эффективно излучаемую мощность передатчика БС:

где РБС - мощность передатчика БС, равная в данном курсовом проекте:

ДРф - потери в фидере, равные 2,5 дБ;

ДРк - потери в комбайнере, равные 4 дБ;

Gо БС - коэффициент усиления антенны БС, равный 7 дБ.

Подставив значения, получаем:

2. Определим параметр Дh, характеризующий неравномерности рельефа местности. Ориентировочно Дh может быть определено по разности ДH максимальной и минимальной высотных отметок местности:

Зная, что Нmax = 250м, а Hmin = 50м, производим расчет:

3. Определим эффективную высоту передающей антенны БС:

где hБС - высота подвеса антенны БС относительно уровня моря (hБС = 25м);

средний уровень местности относительно уровня моря по высотам hi на удалении 1000+250i метров от БС, равный 1,5м.

4. Определим медианное значение минимальной напряженности поля сигнала для абонентской станции от БС:

где - напряженность поля, соответствующая чувствительности приемника АС, дБмкВ/м;

Uсигн - чувствительность приемника, мкВ.

Действующая длина приемной антенны, м.

GАС - коэффициент усиления антенны АС;

Rвх - входное сопротивление приемника, примем Rвх = 50 Ом;

Ко - коэффициент надежности логарифмического распределения зависящий от требуемой надежности связи по времени и месту (Ко = 1,64);

где и - стандартные отклонения сигнала по времени и месту:

ДЕ и Дh - поправка на неравномерность рельефа местности:

Подставляя полученные значения, получаем:

5. Расчет помех в пункте размещения базовой станции

Расчет среднего эффективного значения напряженности поля помех в пункте приемной антенны БС производится на частоте f МГц при заданной плотности транспорта в зоне приема V.

На рисунке 6 приведены характеристики радиопомех, наблюдаемые в антеннах БС. При оценке помех определялась зона восприятия помех приемной антенной БС размером в 1 км 2 , помехи разделялись на три группы в зависимости от плотности транспорта в пределах зоны для каждого момента времени:

Плотность транспорта в зоне высоких уровней помех (Н) VН = 100 маш./км 2 ;

В зоне средних (М) плотность транспорта VМ = 10 маш./км 2 ;

В зоне низких уровней помех (L) плотность транспорта VL = 1 маш./км 2 .

В данном курсовом проекте помеха в зависимости от плотности транспорта находится в зоне средних уровней, т.к. VM = 7 маш./км 2

Принимаем среднюю частоту повторения импульсов помех:

Fu = 3650 имп/п,

которая слабо зависит от рабочей частоты; среднеквадратичное отклонение пиковых значений помех принимаем равным:

По рисунку 6 для заданного значения V и f находим:

Еи (Еи = 22 дБ).

Затем по следующей формуле найдем среднее эффективное значение напряженности помех:

где Пиз - эффективная ширина полосы пропускания типового измерителя помех, принимаем:

Ппр - эффективная ширина полосы пропускания приемника, принимаем.

С учетом собственных шумов аппаратуры среднее эффективное значение напряженности поля суммарных помех:

где GН - номинальная чувствительность приемника, мкВ;

Затухание в антенном тракте приемника;

Длина фидера;

(S/N)пр.вх - номинальное отношение сигнал/шум, принимаем равным 10-12;

hд.пр - действующая высота антенны:

6. Расчет дальности радиосвязи

Определим напряженность поля, реально создаваемую передающей БС в пункте приема при заданном качестве связи по формуле:

где Ес - напряженность поля сигнала, необходимая для получения заданных показателей качества:

где ЕП.ЭФ - среднее эффективное значение напряженности поля суммарных помех, равное 9,43 дБ

R0 = 5-10 дБ - защитное отношение для получения заданного качества приема

С = 8 дБ - значение защитного коэффициента, необходимого для обеспечения требуемого защитного отношения

Вр.н. - поправка, учитывающая отличие номинальной мощности передатчика от мощности 1 кВт:

где Рн - номинальная мощность передатчика, равная 30 Вт. Поэтому:

Вф - затухание в резонаторах, мостовых фильтрах и антеннах разделителях принимаем равным 3 дБ;

Вh2 - поправка, учитывающая высоту приемной антенны АС, дБ:

Для h2 = 3м: ;

Врел - поправка, учитывающая рельеф местности, отличающийся от Дh=50 м, дБ.

Дh определяется по формуле:

где Hmax и Hmin - максимальные и минимальные высотные отметки местности на трассе распространения в выбранном направлении, равные 200 м и 50м.

Следовательно,

По графику (рисунок 7) определяем Врел (Врел = 9 дБ)

Ду - усиление приемной и передающей антенны, равное 7 дБ;

Подставляя полученные значения, определяем напряженность поля, реально создаваемую передающей БС в пункте приема при заданном качестве связи:

Определив напряженность поля, по графику (рисунок 8) определяем ожидаемую дальность связи - 40 км.

7. Структурная схема базовой станции

На рисунке 9 представлен общий принцип построения базовой станции.

7.1 Структурная схема однозоновой транкинговой системы

Структура однозоновой транкинговой системы представлена на рисунке 10.

Устройство объединения радиосигналов служит для объединения и разветвления сигналов, поступающих от передатчика и приемника ретранслятора. Ретранслятор - это набор приемопередатчиков, обслуживающих одну пару несущих частот. Один ретранслятор может обеспечить два или четыре канала трафика. Четыре канала для обслуживания 50-100 радиоканалов; 8 каналов - 200-500AC; 16 каналов - до 2000 радио абонентов. Зона действия БС на частоте 160 МГц - 40км; на частоте 300 МГц - 25-30км; на частоте 300 МГц - 20км.

Коммутатор обслуживает весь трафик системы. Устройство управления обеспечивает взаимодействие всех узлов БС. Оно обрабатывает вызовы, осуществляет аутентификацию вызывающих абонентов, ведение очередей вызовов, внесение записей в базы данных повременной оплаты.

Терминал технического обслуживания и эксплуатации предназначен для контроля за состоянием системы, проведение диагностики неисправностей, внесение изменений в базу данных абонентов.

В состав центральной станции зоны обслуживания входит несколько приемопередатчиков, количество которых зависит от количества каналов и количества обслуживаемых абонентов.

Приемопередатчик каждого канала контролируется контроллером. Максимальное количество каналов на центральной станции до 24. Одним каналом можно обслужить до 30-50 абонентов. Для взаимодействия всех контроллеров центральной станции используется блок сопряжения, который по общей шине управления соединен со всеми контроллерами, обеспечивая, таким образом, управление, учет и тарификацию соединений.

В России наиболее известными являются следующие протоколы транкинговых систем: SmarTrunk II, MPT 1327, LTR и SmartZone. Протокол MPT 1327 предназначен для создания крупных сетей оперативной радиосвязи с практически неограниченным числом абонентов.

Типовая спецификация оборудования в диапазоне 450 МГц для мобильных объектов:

Базовое оборудование: Количество:

Процессор регионального управления Т1530 1;

Пульт оператора в составе: компьютер и принтер;

Программное обеспечение пульта оператора Т1504 1;

Блок коммутации Т1560 1;

Канальная интерфейсная плата Т1560-02 3;

Интерфейсная плата Т1560-03 на одну 2-х проводную линию 1;

Ретранслятор Т850 (50Вт, 100% реж. работы) 4;

Контроллер транкингового канала Т1510 4;

Системный интерфейс Т1520 1;

Модем Т902-15 2;

Шкаф 3 8RU 2.

Антенно-фидерное оборудование: Количество:

Комбайнер M101-450-TRM 1;

Дуплексный фильтр TMND-4516 1;

Приемная распределительная панель TWR8/16-450 1;

Антенна стационарная ANT 450 D6 - 9 (ус. 6-9 дБ) 2;

Кабель коаксиальный РК 50-7-58 70м;

Разъем для РК 50-7-58 2;

Грозоразрядник 1;

Переходные кабели 8.

Транкинговые радиостанции фирмы TAIT ELECTRONICS LTD:

Носимые Т3035;

Мобильные Т2050.

Небольшие многозоновые системы с централизованным управлением и подключением к АТС наиболее целесообразно строить на базе системы TAITNET фирмы TAIT Electronics.

Система TAITNET состоит из центра регионального управления, терминала управления системой, базовых станций и абонентского оборудования. Типовая функциональная схема четырехзоновой транкинговой системы связи TAITNET представлена на блок-схеме (рисунок 11).

7.2 Структурная схема многозоновой транкинговой системы

Система состоит из центра регионального управления, терминала управления системой, базовых станций, абонентского оборудования. В состав центра регионального управления входят: региональный контроллер, коммутатор и интерфейсные платы.

Региональный контроллер (процессор регионального управления Т1530), который осуществляет объединение всех контроллеров Т1510 базовых станций в единую многоканальную многозоновую систему. Этот контроллер может управлять системой, состоящей из 10 зон по 24 канала в каждой зоне. Он собирает информацию от всех подключенных БС и передает ее на терминал управления системой.

Терминал управления системой представляет собой IBM-совместимый персональный компьютер и работает с использованием специального программного обеспечения Т1504 фирмы TAIT Electronics.

Коммутатор Т1560 состоит из коммутационной матрицы и интерфейсных плат. Он обеспечивает коммутацию аудиоканалов при межзоновых соединениях и аудиоканалов с телефонными линиями.

Интерфейсные платы Т1560-03 обеспечивают стык с двухпроводными телефонными абонентскими линиями. Платы Т1560-02 обеспечивают соединение коммутатора Т1560 с трафиковыми каналами БС по выделенным четырех проводным линиям.

Если оператор системы TAITNET располагает абонентской емкостью на АТС, то возможна организация единой нумерации абонентов телефонной сети и абонентов транкинговой системы. Организацию общей нумерации обеспечивает контроллер соединительных линий.

Оборудование базовой станции состоит из антенно-фидерного оборудования, приемопередатчиков Т850, канальных контроллеров Т1510 и системного интерфейса Т1520.

Контроллеры БС поддерживают сеанс связи и взаимодействуют с системным интерфейсом. Системный интерфейс выполняет проверку и учет соединений, выдает информацию о состоянии системы и осуществляет обмен данными с контроллерами БС. Связь с процессором регионального управления обеспечивается по выделенным двух проводным линиям через модем. Для связи абонентов БС с региональным узлом используются 4-х проводные аудиолинии. Контроль и управление базовыми станциями производится региональным контроллером.

В каждой БЗ также имеется системный контроллер. Связь между системными контроллерами базовых станций осуществляется с помощью модемов. Интерфейсные платы в центре регионального управления осуществляют возможность выхода в телефонную сеть общего пользования.

Литература

1. Методические указания и задание на курсовой проект по предмету "Системы связи с подвижными объектами"

2. Конспект лекций по предмету "Системы связи с подвижными объектами"

3. Каталог "Системы и средства радиосвязи", 1998

4. Каталог оборудования фирмы Радиома, 1999

5. Сводная таблица характеристик транкинговых радиостанций МРТ-1327

Размещено на Allbest.ru

Подобные документы

    Определение параметров сотовой сети для данного города и мощности передатчика базовой станции. Выявление количества частотных каналов, которое используется для обслуживания абонентов в одном секторе одной соты. Расчет допустимой телефонной нагрузки.

    курсовая работа , добавлен 04.04.2014

    Выбор частотных каналов. Расчет числа сот в сети и максимального удаления в соте абонентской станции от базовой станции. Расчет потерь на трассе прохождения сигнала и определение мощности передатчиков. Расчет надежности проектируемой сети сотовой связи.

    курсовая работа , добавлен 20.01.2016

    Выбор трассы прокладки волоконно-оптической линии связи. Расчет необходимого числа каналов. Определение числа оптических волокон в оптическом кабеле, выбор его типа и параметров. Структурная схема организации связи. Составление сметы на строительство.

    курсовая работа , добавлен 16.07.2013

    Проектирование и структурная схема городской телефонной сети, использование унифицированного двухстороннего коммутационного элемента. Расчёт интенсивности нагрузки, числа каналов и терминальных модулей. Определение числа плоскостей главной ступени.

    курсовая работа , добавлен 19.06.2012

    Организация поездной радиосвязи. Расчет дальности действия радиосвязи на перегоне и на станции. Радиоаппаратура и диапазон частот. Выбор и анализ направляющих линий. Организация станционной радиосвязи. Организация громкоговорящей связи на станции.

    курсовая работа , добавлен 28.01.2013

    Определение нагрузки, поступающей на станцию системы массового обслуживания. Определение необходимого числа каналов для полнодоступной системы при требуемом уровне потерь. Моделирование в среде GPSS World СМО с потерями от требуемого числа каналов.

    курсовая работа , добавлен 15.02.2016

    Назначение и виды станционной радиосвязи. Условия обеспечения необходимой дальности связи между стационарной радиостанцией и локомотивом. Определение дальности действия радиосвязи и высоты антенны. Определение территориального и частотного разносов.

    курсовая работа , добавлен 16.12.2012

    Проектирование принципиальных электрических схем канала радиосвязи. Расчёт кривой наземного затухания напряженности поля радиоволны при радиосвязи дежурного по станции с машинистом поезда. Разработка синтезатора частоты, обслуживающего радиоканал.

    курсовая работа , добавлен 12.02.2013

    Расчет мощности передатчика заградительной и прицельной помех. Расчет параметров средств создания уводящих и помех. Расчет средств помехозащиты. Анализ эффективности применения комплекса помех и средств помехозащиты. Структурная схема постановщика помех.

    курсовая работа , добавлен 05.03.2011

    Расчет требуемого отношения сигнал-шум на выходе радиолокационной станции. Определение значения множителя Земли и дальности прямой видимости цели. Расчет значения коэффициента подавления мешающих отражений. Действие станции на фоне пассивных помех.