Домой / Интересное / Особенности эксплуатации гальванических элементов и никель-кадмиевых аккумуляторов. Устройство для регенерации гальванических элементов и заряда аккумуляторных батарей асимметричным током Сколько держат заряд гальванических элементов

Особенности эксплуатации гальванических элементов и никель-кадмиевых аккумуляторов. Устройство для регенерации гальванических элементов и заряда аккумуляторных батарей асимметричным током Сколько держат заряд гальванических элементов

Начинающим Зарядное устройство для батареек. (016)

С этим набором вам предоставляется возможность собрать схему для зарядки разряженных гальванических элементов (батареек) размером АА (пальчик) или ААА (мини пальчик). Существуют аккумуляторы, рассчитанные на много циклов заряд/разряд и батарейки, которые согласно инструкции зарядке не подлежат. Но, батарейки тоже делятся на угольно-цинковые (солевые) и щелочные (алкалиновые). Первый вариант батареек действительно, заряжается очень слабо, но второй тип более приближен по своей структуре к аккумуляторам, и при определённых параметрах зарядного тока, их можно заряжать до 20 раз до уровня 70% их первоначального уровня.
Давно известен способ зарядки гальванических элементов асимметричным током заряд/разряд в соотношении 10/1. На этом и основана работа нашей схемы. Генератор импульсов выполнен на логических элементах микросхемы К561ЛА7 (К176ЛА7) DD1.1-DD1.3. Частота следования импульсов около 80 Гц. На транзисторах VT1 и VT2 собран ключ, усиливающий импульсы генератора по току. Если на выходе логического элемента DD1.3 напряжение низкого уровня, транзисторы VT1, VT2 открыты, и через заряжаемые элементы, подключенные к гнездам, протекает зарядный ток. При напряжении высокого уровня на выходе элемента DD1.3 оба транзистора закрыты и заряжаемые элементы разряжаются через резистор R7. Налаживание устройства заключается в подборке резисторов R6 и R7 по требуемым значениям зарядного и разрядного токов. Напряжение питания выбирают в пределах б... 15 В в соответствии с общим напряжением заряжаемых элементов. Зарядный ток выбирают исходя из (6...10)-часового режима заряда. При указанных на схеме номиналах резисторов R6, R7, схема рассчитана на питание от любого внешнего источника (блок питания, аккумулятор) напряжением 12вольт и током не менее 0,1А и зарядку одновременно двух элементов АА или ААА (одновременный заряд двух типов не допускается). Если напряжение внешнего источника отличается от 12В, необходимо будет подобрать R6 и R7 из расчёта максимального тока зарядки до 50 мА. При изменении количества и типа одновременно последовательно заряжаемых элементов, также необходимо подобрать R6 и R7. При подключении источника питания и заряжаемых элементов необходимо соблюдать полярность! Основным косвенным критерием контроля зарядки элементов является наблюдение за температурой заряжаемых элементов. Заряжаемые элементы не должны быть сильно тёплыми, что может привести к закипанию электролита с дальнейшим разрывом корпуса элементов. Нельзя долго держать батарейки разряженными.

Содержание набора 016:

1. Микросхема К561ЛА7,

2. Панелька для микросхемы DIP14,

3. Макетная плата,

4. Транзистор КТ361,

5. Транзистор КТ817,

6. Контейнер для элементов ААх2,

7. Контейнер для элементов АААх2,

8. Диод (2 шт.),

9. Резисторы постоянные (7 шт.):

R1 - 1k6 (Кч/Г/Кр),

R2 - 12k (Кч/Кр/О),

R3, R4, R5 - 1k (Кч/Ч/Кр),

R6 - 120 (IW , К12)

R7 - 470 (Ж/Ф/Кч),

10. Конденсатор 0,47Мкф,

11. Гнездо питания 6,3/2,1,

12. Вилка питания 6,3/2,1,

13. Монтажные провода,

14. Схема и описание.
Видео обзор:

В.Васильев

Карманные аудиоплейеры, радиоприемники, проигрыватели компакт-дисков и другая портативная радиоэлектронная аппаратура массового потребления питается от гальванических или аккумуляторных элементов различных типоразмеров. Во всем мире более 500 различных фирм и дочерних предприятий занимаются их изготовлением, получая постоянную прибыль, так как потребность в этих необходимых всем источниках тока возрастает с каждым годом.

Гальванические элементы относительно недороги, имеют начальное напряжение 1,5 В и емкость от 0,6 до 8,0 А.ч. Их недостатком можно считать резкое падение напряжения по мере разрядки (до 0,7 В), тогда как большинство аппаратов допускает их разрядку только до 1,0...1,1 В. Другой недостаток - самый существенный - одноразовое использование. После израсходования примерно 70% энергии гальванические элементы требуют замены на новые. В литературе описаны разного рода зарядные устройства, которые могут продлить срок службы гальванических элементов, но при этом число циклов подзарядки исчисляется единицами, а емкость элемента снижается практически до нуля. Кроме того, на некоторых типах элементов делается надпись "Подзарядка запрещена". Это сделано с целью предупредить несчастный случай в результате разрушения оболочки элемента при зарядке.

В этом отношении аккумуляторные элементы имеют ряд существенных преимуществ. Главное - возможность многократной зарядки их на протяжении 5...10 лет. Отечественные аккумуляторные элементы имеют гарантированный срок службы не менее 500 циклов зарядки/разрядки, а зарубежные - не менее 1000. Хотя на практике может быть иначе. Например, автор статьи эксплуатирует пару аккумуляторных элементов емкостью 0,45 А.ч, перезаряжая их дважды в неделю (100 циклов в год). Они были приобретены еще в 1993 году, выдержали 700 циклов зарядки/разрядки и продолжают служить.

Другим преимуществом аккумуляторных элементов является высокая стабильность их рабочего напряжения. Свежезаряженный элемент имеет начальное напряжение 1,3...1,4 В, которое снижается по мере разрядки до 1,1 В. Практически полная разрядка элемента достигается при снижении напряжения до 1 В. Дальнейшая разрядка элемента ниже этого порогового значения снижает продолжительность работы аккумулятора и его емкость. В том случае, когда в аппаратуре используется только один элемент, например, в микроприемнике, достижение порогового значения напряжения разрядки заметно по факту прекращения работы приемника. Тогда элемент изымается и ставится на зарядку. В тех случаях, когда используется батарея из двух, четырех, либо шести элементов, может оказаться, что из-за неодинаковой емкости элементов один из них (самый слабый) раньше других понизит свое напряжение до порога и начнет разряжаться далее за счет нормальной работы других элементов. При этом громкость звучания может несколько снизиться, но сам приемник или плейер продолжит свою работу до разрядки других элементов.

Практика показывает, что самый слабый элемент будет иметь напряжение около 0,3 В обратной полярности (там, где раньше был "минус", стал "плюс"). Иными словами, произошла перезарядка элемента, что пагубно скажется на его дальнейшей работе. Исправить это положение можно путем немедленной зарядки его нормальным током в течение требуемого времени.

Аккумуляторные элементы при всей простоте своего внешнего вида обладают "злопамятливым" характером. Это заключается в том, что накопление энергии в полном объеме возможно только при зарядке током определенной величины (десятичасовому разрядному току) в течение 15...16 часов. Кроме того, напряжение разряженного элемента должно быть равно 1,0...1,1 В. О нежелательности разрядки ниже этого порога говорилось выше. Не рекомендуется также, чтобы это напряжение было больше порога, например, 1,2 В, т.е. когда накопленная ранее энергия израсходована не полностью, например, только на 50%. Если такое случится, то при последующем цикле зарядки аккумулятор накопит и отдаст в нагрузку те же 50%, не более. Поэтому для обеспечения длительной эксплуатации аккумуляторных элементов и получения от них номинального запаса энергии, необходимо перед включением их на подзарядку измерить вольтметром напряжение на них. Если оно находится в пределах 1,0.1,1 В, то их можно сразу ставить на зарядку. Если напряжение более этого значения, то требуется предварительно разрядить их. К сожалению, если зарядные устройства продаются везде и повсюду, то специальных устройств для контроля конечного напряжения элемента и разрядки его перед включением нет как в нашей стране, так и за рубежом. Существует мнение, что применение таких устройств осложняет эксплуатацию аппаратуры, особенно теми людьми, которые далеки от техники. В этом отношении специалисты и народные умельцы имеют преимущества.

Так, если использовать аккумуляторные элементы, не контролируя их состояние перед включением на зарядку, то срок службы снижается примерно вдвое. В этом случае отечественные аккумуляторы выходят из строя через 200...300 циклов зарядки/разрядки, а зарубежные - через 400...600. Для большинства потребителей это не будет особенно заметно, так как все равно речь идет о нескольких годах эксплуатации. Но если, прежде чем аккумуляторные элементы будут включены на зарядку, каждый из них пройдет проверку и дополнительно разрядится до требуемого уровня, то срок службы их увеличится по сравнению с гарантийным до 1000...1200 циклов зарядки/разрядки для отечественных и 1500...2000 циклов для зарубежных элементов. Правда, такие предварительные операции кому-то могут показаться сложными, но для тех, кто вынужден постоянно работать с портативной аппаратурой, они не являются помехой.

На отечественном рынке радиотоваров сейчас изобилие аккумуляторных элементов отечественного и зарубежного производства, и не только типоразмера 316. Имеются в продаже элементы других популярных типоразмеров -286, 343, 373.

Проще всего разбираться с отечественными элементами, имеющими стандартное обозначение - НКГЦ - означающее "Никель-Кадмиевый Герметичный Цилиндрический" аккумулятор. После этих букв идут цифры, указывающие номинальную емкость в ампер-часах. Например, самые распространенные и недорогие элементы типоразмера 316 имеют обозначение НКГЦ - 0,45. Это значит, что каждый элемент имеет номинальную емкость 0,45 А.ч, или 450 мА.ч. Аналогично расшифровываются названия НКГЦ - 1,8 и НКГЦ - 3,2: их емкость соответственно равна 1,8 А.ч для типоразмера 343 и 3,2 А.ч для типоразмера 373.

С зарубежными аккумуляторными элементами дело обстоит сложнее. Имеется несколько зарубежных и международных стандартов, принятых фирмами стран Европы, Северной Америки, Азии. Различаются они между собой типоразмерами и номинальной емкостью. В последнее время за счет совершенствования технологии производства емкость аккумуляторных элементов увеличена в 2...4 раза. Так, если 10 лет назад аккумуляторные элементы типоразмеров 316 имели номинальную емкость 0,45...0,6 А.ч, то теперь их емкость достигает 1,5...2 А-ч. Причем, некоторые из этих образцов нечувствительны к зарядке при неполной разрядке, к чему так чувствительны обычные элементы выпуска прошлых лет.

В таблице приведены условные обозначения аккумуляторных элементов, имеющих различные системы условных обозначений для каждого типоразмера. Там же указана продолжительность времени зарядки каждого элемента постоянным током определенной величины. Никель-кадмиевые аккумуляторные элементы допускают зарядку удвоенным значением тока, за счет чего вдвое сокращается время зарядки. Если под рукой нет зарядного устройства для зарядки аккумулятора данного типоразмера, а есть только зарядное устройство с меньшим током зарядки, то тогда зарядка может быть произведена меньшим током, но за большее время.

Имеющиеся в продаже зарядные устройства отечественного и зарубежного производства имеют указание на типоразмер заряжаемых элементов, величину тока зарядки и время, необходимое для нее. В литературе описано немало конструкций самодельных зарядных устройств, но все же лучше воспользоваться фирменным, хотя бы из соображения обеспечения личной электробезопасности, так как обычно зарядка осуществляется от сети переменного тока 220 В, хотя имеются зарядные устройства, работающие от бортовой сети автомобиля постоянного тока напряжением 12 В.

Рабочие характеристики аккумуляторов

Основными рабочими характеристиками аккумуляторных элементов и батарей являются время разрядки при заданном токе и реальная электрическая емкость. Обе характеристики определяются номинальной электрической емкостью и сопротивлением нагрузки, либо величиной потребляемого тока. На рис. 1 приведены результаты измерения напряжения одного аккумуляторного элемента с различным значением номинальной емкости от 180 до 1300 мА.ч при постоянном разрядном токе 100 мА. Такой ток потребляет современный аудиоплейер в режиме воспроизведения. И как видно из рисунка, время разрядки, измеряемое в процессе падения напряжения с 1,35 до 1,0 В, составляет от 1,6 до 11,2 ч. То есть, время нормальной работы аккумулятора практически прямо пропорционально его номинальной емкости.


При этом очевидно, что использование аккумуляторов с большим значением номинальной емкости выгодно вдвойне. Во-первых, резко возрастает время, в течение которого плейер или приемник работает нормально и не требует подзарядки. Во-вторых, уменьшается число циклов зарядка/разрядка, приходящееся на год, что продлевает общий срок службы аккумуля тора. Кроме того, как правило, цена аккумулятора большей емкости в пересчете на 1 А.ч меньше, чем у аккумуляторов меньшей емкости.

Здесь следует отметить, что все рабочие характеристики аккумуляторов рассчитаны наилучшим образом применительно к режиму, при котором разрядка производится десятичасовым разрядным током, т.е. током, равным номинальной емкости, деленной на 10 ч. При значительном возрастании потребляемого тока по сравнению с десятичасовым значением его реальная электрическая емкость падает. Это видно из рис. 2, где приведены результаты измерения реальной емкости аккумуляторного элемента различной номинальной емкости в зависимости от величины потребляемого тока.

Вертикальными пунктирными линиями обозначены границы возможных значений этого тока - от 100 до 300 м.А, куда попадают большинство аудиоплейров, проигрывателей компакт-дисков и портативных приемников.

Из рис. 2 видно, что только аккумуляторы на 1...1,5 А.ч эффективно используют свою энергию. При всех прочих равных условиях аккумуляторы большей емкости выгоднее аккумуляторов малой мощности при работе с большим потребляемым током.

Как заряжать и разряжать аккумуляторы

Для нормальной работы плейера или приемника необходимо, чтобы все элементы имели один и тот же номинал емкости. Как заряжать аккумуляторы, известно всем: взять отработавшие свой срок элементы, проверить их остаточное напряжение и, если необходимо, разрядить каждый из них до 1 В. После чего элементы вставляются в зарядное устройство согласно их полярности и устройство включается в сеть 220 В (или 12 В).

По истечении времени, предписанного инструкцией,зарядное устройство выключается из сети, элементы вынимают из него и вставляют в аппаратуру. Теперь аккумуляторы начнут работать - отдавать накопленную энергию по своему прямому назначению.

В тех случаях, когда вопрос о сохранении, а тем более продлении гарантированного срока службы аккумуляторов не стоит, процедура зарядки может производиться без контроля остаточного напряжения и разрядки элементов до напряжения 1 В. В противном случае операция разрядки до заданного значения может быть осуществлена с помощью простейшего разрядного устройства, принципиальная схема которого приведена на рис. 3.

Здесь аккумуляторные элементы поодиночке или группой подключены к стабилизатору напряжению, выполненному на резисторе R1, и двух соединенных последовательно кремниевых транзисторах, работающих в режиме насыщения коллекторного тока. Этот режим достигается тем, что база и коллектор каждого транзистора соединены между собой. В таком случае каждый транзистор становится стабилизатором напряжения 0,5 В при изменении тока через него в пределах от 1 до 200 мА. Использование двух последовательно соединенных транзисторов дает требуемое напряжение 1 В. При подключении к данному стабилизатору одного или нескольких элементов, даже имеющих большой разброс остаточного напряжения, в конце концов все они будут иметь один и тот же остаточный потенциал - 1 В. Процесс разрядки обычно занимает не более одного-двух часов в самом худшем случае. Убедиться в окончании процесса разрядки можно путем измерения напряжения сначала на элементах, а потом на транзисторах. Если процесс разрядки закончен, то напряжения будут равны 1 В.

Для контроля момента окончания цикла разрядки аккумуляторных элементов по схеме рис. 3 рекомендуется измерить падение напряжения на резисторе R1, которое должно быть равно нулю.

При покупке аккумуляторных элементов зарубежного производства возникают определенные лингвистические трудности с переводом на русский язык этикеток, написанных на английском, немецком и других языках. Ниже приводятся переводы наиболее важных фраз и предложений.

Nickel-Cadmium Battery 1000 mA.h 1,2 V
Никель-кадмиевый аккумулятор емкостью 1000 мА.ч и напряжением 1,2 В

Standart Charge: 15 House at 100 mA
Стандартный режим зарядки: 15 ч током 100 мА

Quick Charge: 6 Hours at mA
Быстрая зарядка: 6 ч при токе 250 мА

CAUTION: Do not dispose of in fire or short circuit
Предупреждение: не помещайте в огонь и не делайте короткое замыкание

Ni/Cd, 1.2 Accumulator, 600mA.h, 60IRS, bis 1000 aufladbar, up to 1000 times rechargeable, Normallabung: 14 Std. mit 60 mA, Standart charges: 14 h. at mA. IEC KR 15/51 (R6)
Никель-кадмиевый аккумулятор напряжением 1,2 В, емкостью 600 мА.ч. Выдерживает 1000 циклов зарядки/разрядки. Зарядка в течение 14 ч током 60 мА.

ACCU PLUS -
Аккумулятор повышенной емкости

Rechargeable Cell -
Подзаряжаемый элемент, может быть аккумуляторным или гальваническим

Р-100 AARM KR 15/51 1000 mA.h 1.2 V1000 F
Аккумуляторный элемент напряжением 1,2 В емкостью 1000 мА.ч, рассчитанный на 1000 циклов зарядки/разрядки

Литература
1. Варламов Р.Г. Современные источники питания. Справочник. М.: ДМК, 1998, 187 с.
2. В.Боравский. Зарядный "универсал" для аккумуляторных блоков питания портативных радиостанций. Ремонт&Сервис, 2000, № 2, с. 60-62.

Проблема повторного использования гальванических элементов питания давно волнует любителей электроники. В технической литературе неоднократно публиковались различные методы “оживления” элементов, но, как правило, они помогали только один раз, да и ожидаемой емкости не давали.

В результате экспериментов удалось определить оптимальные токовые режимы регенерации и разработать зарядные устройства, пригодные для большинства элементов. При этом они обретали первоначальную емкость, а иногда и несколько превосходящую ее.

Восстанавливать нужно элементы, а не батареи из них, поскольку даже один из последовательно соединенных элементов батареи, пришедший в негодность (разряженный ниже допустимого уровня) делает невозможным восстановление батареи.

Что касается процесса зарядки, то она должна проводиться асимметричным током с напряжением 2,4…2,45 В. При меньшем напряжении регенерация весьма затягивается и элементы после 8… 10 часов не набирают и половинной емкости. При большем же напряжении нередки случаи вскипания элементов, и они приходят в негодность.

Перед началом зарядки элемента необходимо провести его диагностику, смысл которой состоит в определении способности элемента выдерживать определенную нагрузку. Для этого к элементу подключают вначале вольтметр и измеряют остаточное напряжение, которое не должно быть ниже 1 В. (Элемент с меньшим напряжением непригоден к регенерации.)

Затем нагружают элемент на 1…2 секунды резистором 10 Ом, и, если напряжение элемента упадет не более чем на 0,2 В, он пригоден к регенерации.

Электрическая схема зарядного устройства, приведенная на рис. 5.23 (предложил Б. И. Богомолов), рассчитана на зарядку одновременно шести элементов (G1…G6 типа 373, 316, 332, 343 и других аналогичных им).

Самой ответственной деталью схемы является трансформатор Т1, так как напряжение во вторичной обмотке у него должно быть строго в пределах 2,4…2,45 В независимо от количества подключенных к нему в качестве нагрузки регенерируемых элементов.

Если готового трансформатора с таким выходным напряжением найти не удастся, то можно приспособить уже имеющийся трансформатор мощностью не менее 3 Вт, намотав на нем дополнительно вторичную обмотку на нужное-напряжение проводом марки ПЭЛ или ПЭВ диаметром 0,8…1,2 мм. Соединительные провода между трансформатором и зарядными цепями должны быть возможно большего сечения.

Продолжительность регенерации 4…5, а иногда и 8 часов. Периодически тот или иной элемент надо вынимать из блока и проверять его по методике, приведенной выше для диагностики элементов, а можно следить с помощью вольтметра за напряжением на заряжаемых элементах и, как только оно достигнет 1,8…1,9 В, регенерацию прекратить, иначе элемент может перезарядиться и выйти из строя. Аналогично поступают в случае нагрева какого-либо элемента.

Лучше всего восстанавливаются элементы, работающие в детских игрушках, если ставить их на регенерацию сразу же после разряда. Причем такие элементы, особенно с цинковыми стаканами, допускают многоразовую регенерацию. Несколько хуже ведут себя современные элементы в металлическом корпусе.

В любом случае, главное для регенерации не допускать глубокого разряда элемента и вовремя ставить его на подзарядку, так что не спешите выбрасывать отработанные гальванические элементы.

Вторая схема (рис. 5.24) использует тот же принцип подзарядки элементов пульсирующим ассимметричным электрическим током. Она предложена С. Глазовым и проще в изготовлении, так как позволяет использовать любой трансформатор с обмоткой, имеющей напряжение 6,3 В. Лампа накаливания HL1 (6,3 В; 0,22 А) выполняет не только сигнальные функции, но и

ограничивает зарядный ток элемента, а также предохраняет трансформатор в случае коротких замыканий в цепи зарядки.

Стабилитрон VD1 типа КС119А ограничивает напряжение заряда элемента. Он может быть заменен набором из последовательно включенных диодов – двух кремниевых и одного германиевого – с допустимым током не менее 100 мА. Диоды VD2 и VD3 — любые кремниевые с тем же допустимым средним током, например КД102А, КД212А.

Емкость конденсатора С1 — от 3 до 5 мкФ на рабочее напряжение не менее 16 В. Цепь из переключателя SA1 и контрольных гнезд Х1, Х2 для подключения вольтметра. Резистор R1 — 10 Ом и кнопка SB1 служат для диагностики элемента G1 и контроля его состояния до и после регенерации.

Нормальному состоянию соответствует напряжение не менее 1,4 В и его уменьшение при подключении нагрузки не более чем на 0,2 В.

О степени заряженности элемента можно также, судить по яркости свечения лампы HL1. До подключения элемента она светится примерно в полнакала. При подключении разряженного элемента яркость свечения заметно увеличивается, а в конце цикла зарядки подключение и отключение элемента почти не вызывает изменения яркости.

При подзарядке элементов типа СЦ-30, СЦ-21 и других (для наручных часов) необходимо последовательно с элементом включать резистор на 300…500 Ом. Элементы батареи типа 336 и других заряжаются поочередно. Для доступа к каждому из них нужно вскрыть картонное донышко батареи.

Если требуется восстановить заряд только у элементов питания серии СЦ, схему для регенерации можно упростить, исключив трансформатор (рис. 5.25).

Работает схема аналогично вышеприведенным. Зарядный ток (1зар) элемента G1 протекает через элементы VD1, R1 в момент положительной полуволны сетевого напряжения. Величина 1зар зависит от величины R1. В момент отрицательной полуволны

диод VD1 закрыт и разряд идет по цепи VD2, R2. Соотношение 1зар и выбрано 10:1. У каждого тйпа элемента серии СЦ своя емкость, но известно, что величина зарядного тока должна составлять примерно десятую часть от электрической емкости элемента питания. Например, для СЦ-21 — емкость 38 мА-ч (1зар=3,8 мА, 1разр=0,38 мА), для СЦ-59 — емкость 30 мА-ч (1зар=3 мА, 1разр=0,3 мА). На схеме указаны номиналы резисторов для ре

генерации элементов СЦ-59 и СЦ-21, а для других типов их легко определить, воспользовавшись соотношениями: R1=220/2*l3ap, R2=0,1*R1.

Установленный в схеме стабилитрон VD3 в работе зарядного устройства участия не принимает, но выполняет функцию защитного устройства от поражения электрическим током — при отключенном элементе G1 на контактах Х2, ХЗ напряжение не сможет возрасти больше, чем уровень стабилизации. Стабилитрон КС175 подойдет с любой последней буквой в обозначении или же может буть заменен двумя стабилитронами типа Д814А, включенными последовательно навстречу друг другу (“плюс” к “плюсу”). В качестве диодов VD1, VD2 подойдут любые с рабочим обратным напряжением не менее 400 В.

Время регенерации элементов составляет 6…10 часов. Сразу после регенерации напряжение на элементе будет немного превышать паспортную величину, но через несколько часов установится номинальное — 1,5 В.

Восстанавливать таким образом элементы СЦ удается три-четыре раза, если их ставить вовремя на подзарядку, не допуская полного разряда (ниже 1 В).

Аналогичный принцип работы имеет схема, показанная на рис. 5.26. Она в особых пояснениях не нуждается.

Идея восстановления разряженных гальванических элементов подобно аккумуляторным батареям не нова. Восстанавливают элементы с помощью специальных зарядных устройств. Практически установлено, что лучше других поддаются регенерации наиболее распространенные стаканчиковые марганцево-цинковые элементы и батареи, такие, как 3336Л (КБС-Л-0,5), 3336Х (КБС-Х-0,7), 373, 336. Хуже восстанавливаются галетные марганцево-цинковые батареи "Крона ВЦ", БАСГ и другие.

Наилучший способ регенерации химических источников питания - пропускание через них асимметричного переменного тока, имеющего положительную постоянную составляющую. Простейшим источником асимметричного тока является однополупериодный выпрямитель на диоде, шунтированном резистором. Выпрямитель подключают к вторичной низковольтной (5-10 в) обмотке понижающего трансформатора, питающегося от сети переменного тока. Однако такое зарядное устройство имеет невысокий к. п. д.- около 10% и, кроме этого, заряжаемая батарея при Случайном отключении напряжения, питающего трансформатор, может разряжаться.

Лучших результатов можно достигнуть, если применять зарядное устройство, выполненное по схеме, представленной на рис. 1. В этом устройстве вторичная обмотка II питает два отдельных выпрямителя на диодах Д1 и Д2, к выходам которых подключены две заряжаемые батареи Б1 и Б2.

Параллельно диодам Д1 и Д2 включены конденсаторы C1 и С2. На рис. 2 показана осциллограмма тока, проходящего через батарею. Заштрихованная часть периода - это время, в течение которого через батарею протекают импульсы разрядного тока.


рис. 2

Эти импульсы, очевидно, особым образом влияют на ход электрохимических процессов в активных материалах гальванических элементов. Процессы, происходящие при этом, еще недостаточно изучены и описания их нет в популярной литературе. При отсутствии импульсов разрядного тока (что бывает при отсоединении конденсатора, включенного параллельно диоду) регенерация элементов практически прекращалась.

Опытным путем установлено, что марганцево-цинковые гальванические элементы сравнительно мало критичны к величине постоянной составляющей и форме отрицательных импульсов зарядного тока. Это позволяет использовать зарядное устройство без дополнительной регулировки постоянной и переменной составляющих зарядного тока для восстановления, различных элементов и батарей. Отношение постоянной составляющей тока заряда к эффективному значению его переменной составляющей должно быть в пределах 5-25.

Производительность зарядного устройства можно повысить, включая для заряда по несколько элементов последовательно. При этом необходимо учесть, что в процессе заряда э. д. с. элементов может возрастать до 2-2,1.в. Исходя из этого и зная напряжение на вторичной обмотке трансформатора, определяют число одновременно заряжаемых элементов.

Подключать к зарядному устройству батареи типа 3336Л удобнее через лампочку накаливания 2,5в Х 0,2а, играющую роль бареттера и одновременно служащую индикатором степени заряда. По мере восстановления электрического заряда батареи свечение лампочки уменьшается. Элементы типа "Марс" (373) необходимо подключать без лампочки, так как постоянная составляющая зарядного тока такого элемента должна быть 200-400 ма. Элементы 336 подключают группами по три штуки,включенных последовательно. Условия заряда такие же, как и для батарей типа 3336. Зарядный ток для элементов 312, 316 должен быть 30-60 ма. Возможен одновременный заряд больших групп батарей 3336Л (3336Х) непосредственно от сети (без трансформатора) через два включенных последовательно диода Д226Б, параллельно которым включен конденсатор 0,5 мкф с рабочим напряжением 600 в.

Зарядное устройство может быть выполнено на базе трансформатора электробритвы "Молодость", пмеющего две вторичные обмотки с напряжением 7,5 в. Удобно использовать также накальное напряжение 6,3 в любого сетевого лампового радиоприемника. Естественно, то или иное решение выбирают в зависимости от требуемого максимального зарядного тока, определяемого типом восстанавливаемых элементов. Из этого же исходят, выбирая выпрямительные диоды.


рис. 3

Для того, чтобы оценить эффективность данного метода восстановления гальванических элементов и батарей, на рис. 3 представлены графики разрядного напряжения для двух батарей 3336Л при сопротивлении нагрузки Rн=10 ом. Сплошными линиями показаны кривые разряда новых батареи,а пунктирными - после двадцати полных циклов разряд - заряд. Таким образом, работоспособность батарей после двадцатиразового использования еще вполне удовлетворительна.

Сколько же циклов разряд-заряд могут выдерживать гальванические элементы и батареи? Очевидно, это сильно зависит от условий эксплуатации, сроков хранения и других факторов. На рис. 4 показано изменение, времени разряда на нагрузку Rн=10 ом двух батарей 3336Л (кривые 1 и 2) в течение 21 цикла разряд-заряд. Батареи разряжались до напряжения не ниже 2,1 в, режим заряда обеих батарей - одинаков. В течение указанного времени эксплуатации батарей время разряда уменьшилось со 120-130 мин до 50-80 мин, то есть почти вдвое.


рис. 4

Такое же уменьшение емкости допускается техническими условиями в конце установленного максимального срока хранения. Практически удается восстанавливать элементы и батареи до тех пор, пока у них не будут полностью разрушены цинковые стаканчики или не высохнет электролит. Установлено, что больше циклов выдерживают элементы, интенсивно разряжающиеся на мощную нагруэку (например, в фонариках, в блоках питания электробритв). Не следует разряжать элементы и батареи до напряжения ниже 0,7 в на элемент. Восстанавливаемость элементов 373 относительно хуже, так как после 3-6 циклов их емкость резко уменьшается.

О необходимой продолжительности заряда можно сделать, вывод, пользуясь графиком; представленным на рис. 4. При увеличении времени заряда свыше 5 часов восстановленная емкость батарей увеличивается в среднем весьма незначительно. Поэтому можно считать, что при указанных величинах зарядного тока минимальное время восстановления составляет 4-6 часов, причем явных признаков конца заряда мар-ганцево-цинковые элементы не имеют и к перезаряду нечувствительны.

Применение асимметричного тока оказывается полезным также для зарядки и формовки аккумуляторов и аккумуляторных батарей. Этот вопрос, однако, еще требует проверки на практике и может открыть новые интересные возможности аккумуляторов.

Электропитание РЕГЕНЕРАЦИЯ ГАЛЬВАНИЧЕСКИХ ЭЛЕМЕНТОВ И БАТАРЕЙ И. АЛИМОВ Амурская обл.
Идея восстановления разряженных гальванических элементов подобно аккумуляторным батареям не нова. Восстанавливают элементы с помощью специальных зарядных устройств. Практически установлено, что лучше других поддаются регенерации наиболее распространенные стаканчиковые марганцево-цинковые элементы и батареи, такие, как 3336Л (КБС-Л-0,5), 3336Х (КБС-Х-0,7), 373, 336. Хуже восстанавливаются галетные марганцево-цинковые батареи "Крона ВЦ", БАСГ и другие.
Наилучший способ регенерации химических источников питания - пропускание через них асимметричного переменного тока, имеющего положительную постоянную составляющую. Простейшим источником асимметричного тока является однополупериодный выпрямитель на диоде, шунтированном резистором. Выпрямитель подключают к вторичной низковольтной (5-10 в) обмотке понижающего трансформатора, питающегося от сети переменного тока. Однако такое зарядное устройство имеет невысокий к. п. д.- приблизительно 10% и, кроме этого, заряжаемая батарея при Случайном отключении напряжения, питающего трансформатор, может разряжаться.
Лучших результатов можно добиться, если применять зарядное устройство, выполненное по схеме, представленной на рис.
1. В этом устройстве вторичная обмотка II питает два отдельных выпрямителя на диодах Д1 и Д2, к выходам которых подключены две заряжаемые батареи Б1 и Б2.


рис. 1
Параллельно диодам Д1 и Д2 включены конденсаторы C1 и С2. На рис. 2 показана осциллограмма тока, проходящего через батарею. Заштрихованная часть периода - это час, в течение которого через батарею протекают импульсы разрядного тока.


ЧТОБЫ УВЕЛИЧИТЬ (УМЕНЬШИТЬ) СХЕМУ, НАЖМИТЕ НА КАРТИНКУ


рис. 2
Эти импульсы, очевидно, особым образом влияют на ход электрохимических процессов в активных материалах гальванических элементов. Процессы, происходящие при этом, ещё недостаточно изучены и описания их нет в популярной литературе. При отсутствии импульсов разрядного тока (что бывает при отсоединении конденсатора, включенного параллельно диоду) регенерация элементов практически прекращалась.
Опытным путем установлено, что марганцево-цинковые гальванические элементы сравнительно мало критичны к величине постоянной составляющей и форме отрицательных импульсов зарядного тока. Это позволяет использовать зарядное устройство без дополнительной регулировки постоянной и переменной составляющих зарядного тока для восстановления, различных элементов и батарей. Отношение постоянной составляющей тока заряда к эффективному значению его переменной составляющей должно быть в пределах 5-25.
Производительность зарядного устройства можно повысить, включая для заряда по несколько элементов последовательно. При этом надобно учесть, что в процессе заряда э. д. с. элементов может возрастать до 2-2,1.в. Исходя из этого и зная напряжение на вторичной обмотке трансформатора, определяют число одновременно заряжаемых элементов.
Подключать к зарядному устройству батареи типа 3336Л удобнее через лампочку накаливания 2,5в Х 0,2а, играющую роль бареттера и одновременно служащую индикатором степени заряда. По мере восстановления электрического заряда батареи свечение лампочки уменьшается. Элементы типа "Марс" (373) надобно подключать без лампочки, так как постоянная составляющая зарядного тока такого элемента должна быть 200-400 ма. Элементы 336 подключают группами по три штуки,включенных последовательно. Условия заряда такие же, как и для батарей типа 3336. Зарядный ток для элементов 312, 316 должен быть 30-60 ма. Возможен одновременный заряд больших групп батарей 3336Л (3336Х) непосредственно от сети (без трансформатора) через два включенных последовательно диода Д226Б, параллельно которым включен конденсатор 0,5 мкф с рабочим напряжением 600 в.
Зарядное устройство может быть выполнено на базе трансформатора электробритвы "Молодость", пмеющего две вторичные обмотки с напряжением 7,5 в. Удобно использовать также накальное напряжение 6,3 в любого сетевого лампового радиоприемника. Естественно, то или иное решение выбирают в зависимости от требуемого максимального зарядного тока, определяемого типом восстанавливаемых элементов. Из этого же исходят, выбирая выпрямительные диоды.


ЧТОБЫ УВЕЛИЧИТЬ (УМЕНЬШИТЬ) СХЕМУ, НАЖМИТЕ НА КАРТИНКУ


рис. 3
Для того, чтобы оценить эффективность данного метода восстановления гальванических элементов и батарей, на рис. 3 представлены графики разрядного напряжения для двух батарей 3336Л при сопротивлении нагрузки Rн=10 ом. Сплошными линиями показаны кривые разряда новых батареи,а пунктирными - после двадцати полных циклов разряд - заряд. Таким образом, работоспособность батарей после двадцатиразового использования ещё совершенно удовлетворительна.
Сколько же циклов разряд-заряд могут выдерживать гальванические элементы и батареи? Очевидно, это сильно зависит от условий эксплуатации, сроков хранения и других факторов. На рис. 4 показано изменение, времени разряда на нагрузку Rн=10 ом двух батарей 3336Л (кривые 1 и 2) в течение 21 цикла разряд-заряд. Батареи разряжались до напряжения не ниже 2,1 в, режим заряда обеих батарей - одинаков. В течение указанного времени эксплуатации батарей час разряда уменьшилось со 120-130 мин до 50-80 мин, то есть почти вдвое.


ЧТОБЫ УВЕЛИЧИТЬ (УМЕНЬШИТЬ) СХЕМУ, НАЖМИТЕ НА КАРТИНКУ


рис. 4
Такое же уменьшение емкости допускается техническими условиями в конце установленного максимального срока хранения. Практически удается восстанавливать элементы и батареи до тех пор, пока у них не будут полностью разрушены цинковые стаканчики или не высохнет электролит. Установлено, что больше циклов выдерживают элементы, интенсивно разряжающиеся на мощную нагруэку (например, в фонариках, в блоках питания электробритв). Не следует разряжать элементы и батареи до напряжения ниже 0,7 в на ингредиент. Восстанавливаемость элементов 373 относительно хуже, так как после 3-6 циклов их емкость резко уменьшается.
О необходимой продолжительности заряда можно сделать, вывод, пользуясь графиком; представленным на рис.
4. При увеличении времени заряда более 5 часов восстановленная емкость батарей увеличивается в среднем весьма незначительно. Поэтому можно считать, что при указанных величинах зарядного тока минимальное час восстановления составляет 4-6 часов, причем явных признаков конца заряда мар-ганцево-цинковые элементы не имеют и к перезаряду нечувствительны.
Применение асимметричного тока оказывается полезным также для зарядки и формовки аккумуляторов и аккумуляторных батарей. Этот вопрос, однако, ещё требует проверки на практике и может открыть новые интересные возможности аккумуляторов.
(Радио 6-72, с.55-56)