Домой / Интересное / Что такое сингулярность? Точка сингулярности. Сингулярность черной дыры. Сингулярное состояние Сингулярность в истории

Что такое сингулярность? Точка сингулярности. Сингулярность черной дыры. Сингулярное состояние Сингулярность в истории

Выше неоднократно отмечалось, что в экстремальных условиях вблизи сингулярности необходимо учитывать одновременно и ОТО и квантовые эффекты. Учет квантовых эффектов может внести принципиальные изменения в выводы классической ОТО.

В какой области можно ожидать существенных эффектов? ОТО не вносит в теорию новых физических констант, кроме уже известных: скорости света с и ньютоновской постоянной тяготения Планк ввел свою знаменитую постоянную в теорию излучения в 1899 г. (сейчас принято пользоваться величиной Он отчетливо понимал значение идеи квантования для всей физики, всего естествознания.

Рассматривая как три равноправные фундаментальные величины, Планк показал, что через них могут быть выражены величины любой размерности. В частности, через можно выразить единицы длины времени массы те, плотности

Легко заметить сходство закона Кулона и ньютоновского так как одной размерности, то, очевидно, есть безразмерная величина, подобно знаменитой Для элементарных частиц Условие дает характерную массу те, приведенную выше. Длина есть «комптоновская длина волны» массы а именно Наконец, в теории элементарных частиц применяется еще один способ выражения. Примем . В такой системе единиц длина и время имеют одинаковую размерность, обратную размерности массы, Произведение безразмерно, следовательно, размерность есть Соответствующие «площадь», «сечение) равны

Эти величины характеризуют область, в которой принципиальную роль играют квантовые эффекты в гравитации: нужно, чтобы кривизна пространства-времени была порядка

Такая ситуация может возникнуть в вакууме, но в вакууме она «не обязательна». С другой стороны, если плотность вещества достигает порядка то соответствующая кривизна (порядка следует из уравнений ОТО и в этом смысле «обязательна».

Насколько просто найти область, где важны квантовые явления, настолько же трудно выяснить, что именно происходит в этой области [С. Де Витт, Уилер (1968), Гинзбург, Киржниц, Любушин (1971)]. Здесь становится трудно даже сформулировать проблему. Вся обычная (в том числе и квантовая) физика рассматривается

в рамках заданного пространственно-временного многообразия. В квантовой физике классические траектории и поля заменяются понятием волновых функций, с помощью которых можно высказывать вероятностные предсказания о результатах опытов. Однако координаты и время рассматриваются как обыкновенные детерминированные величины (С-числа).

Искривление пространства-времени, зависящее от усредненных величин, не меняет принципиальной стороны дела, если это искривление меньше Между тем в квантово-гравитационной области сами пространство и время, возможно, приобретают вероятностные, недетерминированные свойства.

В космологии выход состоит в том, чтобы задавать вопросы (и вычислять величины), относящиеся к тому периоду, когда мир уже вышел из сингулярного состояния, когда нигде нет ни грандиозной кривизны, ни огромной плотности материи.

Такой подход был бы похож на теорию -матрицы. Как известно, Гейзенберг предложил рассматривать лишь состояния до и после столкновения элементарных частиц, отказываясь от детального описания самого акта столкновения. Ценность такого подхода заключается в том, что доказывается принципиальное существование ответа, однако для получения конкретного ответа этого недостаточно! Квантово-гравитационная теория необходима именно в космологии, поскольку имеется уверенность, что Вселенная (по-видимому, можно даже усилить: вся Вселенная, все вещество Вселенной!) прошла через состояние, анализ которого требует этой теории. Такое рассмотрение тем более необходимо, что выше мы видели, как велико разнообразие классических (не квантовых) космологических решений. Может быть, квантово-гравитационная теория сингулярного состояния укажет условия выбора из этого множества.

Законченной квантово-гравитационной космологической теории в настоящее время не существует, есть лишь отдельные результаты, излагаемые ниже. Однако и в таком несовершенном виде можно усмотреть указания на то, что, может быть, окажутся запрещенными анизотропные сингулярные метрики, останется разрешенным только квазиизотропное решение [см. Зельдович (1970в, 1973а), Лукаш, Старобинский (1974)]. Намечается подход к объяснению энтропии Вселенной (§ 9 этой главы). Следовательно, несомненно огромное значение рассматриваемой проблемы для космологии (опосредствованно, через длинную цепочку выводов - и для наблюдательной космологии). Общий характер данной книги заключается в том, что излагаются (наряду с твердо установленными фактами) также гипотезы и вопросы, подлежащие исследованию.

Поэтому мы, не колеблясь, посвящаем следующие параграфы квантово-гравитационной теории.

Примером для такой теории служит квантовая электродинамика, где удалось получить замечательное согласие с опытом специфических эффектов, предсказанных теорией в конце 40-х годов. Мы имеем в виду прежде всего лэмбовский сдвиг уровней водородного атома и аномальный магнитный момент электрона. Успех достигнут путем последовательного применения квантовой теории с преодолением трудностей (что потребовало введения новых понятий: перенормировки массы, перенормировки заряда, поляризации вакуума). Однако не потребовалось вводить элементарную длину, не потребовалось отказываться от общих принципов квантовой механики. Квантовая электродинамика является вдохновляющим примером для будущей квантово-гравитационной теории.

В ряде работ развивается логическая схема такой теории и вычисляются квантово-гравитационные поправки к величинам, наблюдаемым в лабораторных опытах. Первый шаг был сделан в 30-х годах; была проквантована линейная теория гравитационных волн. При этом гравитационные волны рассматривались как малые возмущения геометрии плоского пространства или как постороннее (не геометрическое) тензорное поле, вложенное в плоское пространство. С сегодняшней точки зрения результаты тривиальны: энергия гравитонов равна они являются бозонами со спином 2 и нулевой массой покоя и т. п. В следующем порядке оказывается существенной нелинейность исходной классической теории (ОТО): гравитоны сами обладают массой и импульсом (хотя масса покоя их и равна нулю) и являются, следовательно, источником гравитационного поля. Последовательный учет этого факта начат Фейнманом (1963) и доведен до ясности в последнее время Фаддеевым и Поповым (1967) и Де Виттом (1967 а, б).

Специфические квантово-гравитационные эффекты в лабораторной физике (да и в астрофизике, за вычетом теории сингулярностей) малы. Деятельность Фейнмана и ряда других авторов вдохновлялась скорее эстетическими целями, что Фейнман и не скрывает.

В космологии ситуация существенно иная: при квантовогравитационные эффекты порядка единицы, и представляет интерес даже грубое представление о характере этих эффектов. Как будет показано ниже, наиболее важным эффектом, вероятно, является рождение частиц или пар частиц в сильных гравитационных полях.

Влияние гравитационного поля на движение частиц и распространение волн полностью описывается заданием метрики пространства-времени. Постоянная не входит в уравнения движения частиц и распространения волн в заданном пространстве-времени.

Самое общее представление о процессе рождения частиц можно получить, начиная с рассмотрения классической (не квантовой) линейной волны. В плоском пространстве-времени волна распространяется так, что сохраняются ее энергия и частота в отдельности. В искривленной и нестационарной метрике существует важный предельный случай геометрической оптики, если длина волны и период малы по сравнению с размером области, в которой происходит заметное отклонение от евклидовой геометрии, и по сравнению со временем, за которое метрика изменяется. Геометрическая оптика содержит два понятия:

1) понятие о лучах, являющееся для волнового пакета аналогом понятия траектории для частицы;

2) понятие адиабатического инварианта, относящееся к амплитуде и интенсивности волнового поля. Энергия волнового поля изменяется пропорционально его частоте.

Следовательно, отношение энергии к частоте является инвариантом, остается постоянным в геометрической оптике.

Но это отношение как раз пропорционально числу квантов поля: Классическая геометрическая оптика включает в себя сохранение числа квантов, хотя в этой теории и не рассматривались никакие квантовые эффекты. Но при быстром изменении метрики адиабатическая инвариантность нарушается, а значит, меняется число квантов, они рождаются или уничтожаются. Важно, что изменение числа квантов происходит без каких-либо внешних источников поля (движущихся зарядов и т. п.), только за счет взаимодействия с геометрией пространства-времени.

В квантовой теории обозначим волновую функцию низшего состояния (вакуума) через а состояния с частицей - через При рассмотрении переменной метрики и рождения частицы возникает суперпозиция:

По правилам квантовой теории вероятность найти частицу равна соответственно и энергия поля Но в выражениях тензора натяжений есть и недиагональные члены; например,

В начале процесса при малых нарушается обычное условие энергодоминантности (см. стр. 614), возможно Рождение частиц и коэффициенты типа зависят от соотношения между частотой волны (соответствующей разности энергий состояний

и и скоростью изменения метрики

Для типичной для космологии степенной зависимости метрики от времени характерное время изменения метрики равно времени прошедшему с момента сингулярности. Следовательно, неадиабатичны волны с Считая, что в этой области рождается в среднем по одному кванту на моду, получим порядок, величины плотности энергии рожденных квантов

Заметим, что, хотя речь идет о рождении частиц в гравитационном поле, величина не вошла в ответ!

Отметим, далее, сильную зависимость от Строго говоря, мы нашли (по порядку величины) плотность энергии частиц, родившихся за время между Здесь возникает огромное различие между задачей о коллапсе (сингулярность в будущем) и космологической задачей (сингулярность в прошлом).

В задаче коллапса рассматривается период, когда время отрицательно (положено, что сингулярность отвечает . В данный момент частицы, родившиеся давно (например, в период раньше или дают малый вклад в Скорость рождения частии быстро возрастает; в каждый данный момент главную роль играют частицы, родившиеся в самое последнее время, например в интервале (напоминаем, Формула имеет место хотя бы как порядковая оценка. Рассматривая дальше задачу о коллапсе, можно спросить: когда родившиеся частицы сами существенно повлияют на метрику? До сих пор мы рассматривали распространение «пробных» волн (ср. «пробные» частицы) в заданной метрике.

В уравнениях ОТО степенные решения соответствуют тому, что компоненты тензора кривизны порядка В правой части уравнений ОТО находится Подставляя выражение и приравнивая правую и левую части, получим характерное время, которое выражается через а следовательно, не может отличаться от

Итак, в задаче о коллапсе уже проясняется то новое, что должна принести квантово-гравитационная теория.

При приближении к сингулярности в силу нарушения адиабатичности рождаются новые частицы - фотоны, электрон-позитронные пары, пары гравитоны. Их плотность энергии при растет быстрее, чем плотность энергии «вещества», заполнявшего пространство вдали от сингулярности и сжатого по адиабатическому

закону. При приближении к влияние новорожденных частиц становится преобладающим и действует на дальнейшее изменение метрики даже в том случае, если до «вещество» не влияло на метрику, происходил вакуумный подход к сингулярности (см. §3 гл. 18).

Совершенно иная ситуация возникает при попытке применить теорию рождения частиц к космологии. Начнем рассмотрение в момент Примем, что в этот момент задана метрика; например, в пространственно-однородной задаче заданы значения кривизны и скоростей расширения (по разным направлениям) и структурные константы, характеризующие тип пространства. Пренебрежем плотностью энергии и импульса вещества в момент в соответствии с «вакуумным» характером решения. За время с до в вакууме возникнут частицы с плотностью энергии, по порядку величины

Подчеркнем, что в космологической задаче эта формула действует очень недолго: в более поздний момент плотность энергии недавно рожденных частиц но рожденные ранее (при частицы не исчезают - они расширяются и дадут

Оказывается, что Плотность энергии в данный момент (в отличие от задачи коллапса) радикально зависит от момента включения рождения частиц, от того, в каком смысле и как происходило включение.

Итак, в задаче о коллапсе, по крайней мере до поры до времени (до а может быть, и дальше), возможен анализ явления безотносительно к границам существующей квантово-гравитационной теории. В космологии Вселенная в каждый момент «помнит» начальные условия.

Наряду с этими общими соображениями можно отметить важный конкретный факт. В теории распространения волн - а следовательно, и в теории рождения частиц - существует весьма важный принцип конформной инвариантности. Подробно этот принцип разбирается в § 19 этой главы. Этот принцип позволяет пойти дальше соображений размерности и выявить качественное различие между

сингулярностями фридмановского и анизотропного (казнеровского) типа.

Конформным называется изменение метрики, заключающееся в изменении масштаба всех длин и времен, причем это изменение масштаба может быть различным в разных мировых точках, но обязано быть одинаковым в данной точке для всех пространственных направлений и времен. Так, например, плоский мир Минковского можно преобразовать в «конформно-плоский» мир:

Подчеркнем, что при таком преобразовании существенно меняется геометрия, - речь идет не о преобразовании координат, а об установлении соответствия между различными четырехмериями. Конформно-плоский мир имеет отличный от нуля тензор кривизны выражающийся через производные функции В конформно-плоском мире особенно просто рассматривается распространение волн со скоростью света: луч, подчиняющийся условию соответствует решению в мире Минковского. Такое же решение имеет место и в конформно-плоском мире: если то и Распространение волн в плоском мире Минковского не сопровождается рождением частиц. Следовательно, рождения безмассовых частиц нет и в конформно-плоском мире.

Начальная стадия фридмановской модели описывается метрикой

Такая метрика является конформно-плоской; введем

и выразив в функции окончательно получим

что и требовалось. Напротив, казнеровское решение

нельзя привести к такому виду, его метрика не является конформноплоской.

Во фридмановском решении частицы с нулевой массой покоя не рождаются совсем, а частицы с ненулевой массой покоя не

даются практически. Сделанные выше размерные оценки рождения частиц в действительности относятся только к анизотропной сингулярности.

Это результат можно наглядно истолковать в терминах гидродинамики. Рождение частиц можно назвать проявлением вязкости вакуума: при деформации вакуума выделяется тепло, растет энтропия. В гидродинамике известны два типа вязкости: первая, связанная со сдвиговой деформацией элемента объема жидкости, и вторая, связанная с изменением плотности, т. е. со всесторонним расширением или сжатием. Известно, что ультрарелятивистский газ не имеет второй вязкости.

Этот результат можно перенести и на «вакуум ультрарелятивистских частиц», т. е. на проблему рождения. В решении Казнера происходит деформация сдвига и имеет место рождение частиц. В решении Фридмана расширение изотропно, могла бы работать только вторая вязкость, но она отсутствует, а потому и не происходит рождения частиц. Рождение частиц в изотропных моделях рассматривали Л. Паркер (1968, 1969, 1971-1973), Гриб, Мамаев (1969, 1971), Черников, Шавохина (1973), в анизотропных моделях - Зельдович (1970в), Зельдович, Старобинский (1971), Ху, Фуллинг, Л. Паркер (1973), Ху (1974), Бергер (1974).

Подчеркивая различие рождения частиц в анизотропной и в изотропной сингулярности, мы основываемся на малости безразмерной величины для всех известных частиц. В этой связи следует отметить, что ряд авторов высказывали гипотезу о существовании сверхтяжелых частиц с массой как раз такой, что

Это значит, что равно «планковской» единице массы Отсюда название гипотетических частиц «планкеоны» - Станюкович (1965, 19666); Марков (1966) называет эти частицы «максимоны». По нашему мнению, теория не дает указаний на существование таких элементарных частиц. Стремясь к ортодоксальности и к минимуму гипотез, ниже мы не рассматриваем возможное влияние таких частиц на физические процессы.

Выше отмечались трудности решения космологической задачи с учетом рождения частиц.

Можно выдвинуть гипотезу, согласно которой в природе осуществляется изотропный выход из сингулярности - именно потому, что в противном случае рождение частиц привело бы к внутренним противоречиям теории. Такая гипотеза была высказана Зельдовичем (1970в) и подробно проанализирована Лукашом и Старобинским (1974).

Рассмотрим начальный этап космологической задачи - выход из сингулярности.

Тем меньше при При исчезает область существования казнеровского решения.

Такой результат, вероятно, означает, что квантовые эффекты запрещают анизотропные сингулярные решения (те самые решения, которые отвечают наиболее общей восьмифункционной асимптотике) для космологической задачи.

Решения, которые при этом «выживают», включают в себя фридмановское решение, но не ограничиваются этим наиболее узким классом. Точнее, следует предположить, что истинное решение будет локально изотропным. Для Вселенной в целом такое рассуждение приводит к квазиизотропному решению, свойства которого описаны выше.

Там же отмечено, что эти свойства хорошо согласуются с тем, что известно о современной Вселенной. Остаются неизвестными масштаб и амплитуда отклонений метрики от однородной, однако есть и определенные нетривиальные результаты, например отсутствие вихря скорости Таким образом, глубокие теоретические

соображения, в принципе, могут (подчеркнем, что в настоящее время мы находимся на уровне гипотез) привести к следствиям, существенным для поздних стадий.

В такой концепции остается, однако, без объяснения величина энтропии. Другой подход к этой проблеме описан в §9 этой главы.

В теории хотелось бы иметь объяснение всех важнейших свойств Вселенной. Однако, в частности, без объяснения остается спектр возмущений, приводящих к образованию галактик. Конформная инвариантность строго доказана для уравнений Дирака (для нейтрино, а также - в пределе больших импульсов, и для других частиц со спином 1/2) и для электромагнитных уравнений Максвелла. Ситуация сложнее для гравитационных волн (см. § 18 этой главы).

Вопросы, затронутые здесь в общих чертах, качественно, ниже рассматриваются количественно, с формулами.


Характеризующееся бесконечной плотностью и температурой вещества. Космологическая сингулярность является одним из примеров гравитационных сингулярностей , предсказываемых общей теорией относительности (ОТО) и некоторыми другими теориями гравитации .

Возникновение этой сингулярности при продолжении назад во времени любого решения ОТО , описывающего динамику расширения Вселенной , было строго доказано в 1967 году Стивеном Хокингом . Также он писал:

«Результаты наших наблюдений подтверждают предположение о том, что Вселенная возникла в определённый момент времени. Однако сам момент начала творения, сингулярность, не подчиняется ни одному из известных законов физики».

Например, не могут быть одновременно бесконечными плотность и температура, т. к. при бесконечной плотности мера хаоса стремится к нулю, что не может совмещаться с бесконечной температурой. Проблема существования космологической сингулярности является одной из наиболее серьёзных проблем физической космологии. Дело в том, что никакие наши сведения о том, что произошло после Большого Взрыва, не могут дать нам никакой информации о том, что происходило до этого.

Попытки решения проблемы существования этой сингулярности идут в нескольких направлениях: во-первых, считается, что квантовая гравитация даст описание динамики гравитационного поля, свободного от сингулярностей , во-вторых, есть мнение, что учёт квантовых эффектов в негравитационных полях может нарушить условие энергодоминантности, на котором базируется доказательство Хокинга , в-третьих, предлагаются такие модифицированные теории гравитации , в которых сингулярность не возникает, так как предельно сжатое вещество начинает расталкиваться гравитационными силами (так называемое гравитационное отталкивание), а не притягиваться друг к другу.

Примечания


Wikimedia Foundation . 2010 .

  • Кларк, Джон Д.
  • Ричард Тайлер

Смотреть что такое "Космологическая сингулярность" в других словарях:

    Сингулярность - В Викисловаре есть статья «сингулярность» Сингулярность от лат. … Википедия

    СИНГУЛЯРНОСТЬ КОСМОЛОГИЧЕСКАЯ - (от лат. singularis отдельный … Физическая энциклопедия

    СИНГУЛЯРНОСТЬ - космологическая (от лат. singularis отдельный, особый), состояние Вселенной в определённый момент времени в прошлом, когда плотн. энергии материи и кривизна пространства времени были очень высоки (физ. С.) или даже бесконечны (матем. С.). Это… … Естествознание. Энциклопедический словарь

    Гравитационная сингулярность - У этого термина существуют и другие значения, см. Сингулярность. Гравитационная сингулярность (иногда сингулярность пространства времени) точка (или подмножество) в пространстве времени, через которую невозможно гладко продолжить входящую в … Википедия

    Космологические модели - Космология Изучаемые объекты и процессы … Википедия

    Большой взрыв - по современным представлениям, состояние расширяющейся Вселенной в прошлом (около 13 млрд. лет назад), когда средняя плотность Вселенной в огромное число раз превышала современную. Из за расширения средняя плотность Вселенной убывает с течением… … Энциклопедический словарь

    Модель Вселенной - современная Основные качественные выводы, следующие из анализа фридмановской модели (см. Модели Вселенной): Вселенная нестационарна (она расширяется), плотности энергии вещества, и излучения монотонно падают с течением времени; в прошлом… … Концепции современного естествознания. Словарь основных терминов

    БОЛЬШОЙ ВЗРЫВ Современная энциклопедия

    БОЛЬШОЙ ВЗРЫВ - по современным представлениям состояние расширяющейся Вселенной в прошлом (ок. 13 млрд. лет назад), когда средняя плотность Вселенной в огромное число раз превышала современную. Из за расширения средняя плотность Вселенной убывает с течением… … Большой Энциклопедический словарь

    Большой взрыв - БОЛЬШОЙ ВЗРЫВ, по современным представлениям, состояние расширяющейся Вселенной в прошлом (около 13 млрд. лет назад), когда ее средняя плотность в огромное число раз превышала нынешнюю. Из за расширения средняя плотность Вселенной убывает с… … Иллюстрированный энциклопедический словарь

Сегодня во многих публикациях сингулярность Большого взрыва (БВ) преподносится как некая физическая сущность начального состояния Вселенной, момент её возникновения из ничтожно малой области (точки), имеющей бесконечно большие значения плотности вещества и температуры.

Такая физическая трактовка сингулярности, как начало начал возникновения Вселенной, по-существу, мало чем отличается от концепции сотворения мира Творцом из ничего.

Правда есть и другие воззрения на этот счет, в частности, о цикличности развития Вселенной, не лишенные оснований.

Порассуждаем об этом понятии – сингулярность Большого взрыва

Начнем с определений.

В Интернет-энциклопедии «Википедия» сказано следующее (привожу с сокращениями, дабы не погружаться чрезмерно в детали).

Сингулярность (от лат. singularis «единственный, особенный»). К примеру, математическая сингулярность (особенность) - точка, в которой математическая функция стремится к бесконечности или имеет какие-либо иные нерегулярности поведения.

Космологическая сингулярность - состояние Вселенной в начальный момент Большого Взрыва, характеризующееся бесконечной плотностью и температурой вещества.

Возникновение этой сингулярности при продолжении назад во времени любого решения общей теории относительности (ОТО), описывающего динамику расширения Вселенной, было строго доказано в 1967 году Стивеном Хокингом. Также он писал – «Результаты наших наблюдений подтверждают предположение о том, что Вселенная возникла в определённый момент времени. Однако сам момент начала творения, сингулярность, не подчиняется ни одному из известных законов физики».

Сингулярности не наблюдаются непосредственно и являются, при нынешнем уровне развития физики, лишь теоретическим построением. Считается, что описание пространства-времени вблизи сингулярности должна давать квантовая гравитация.

Из приведенных выше определений следует, что, первое:

сингулярности при нынешнем уровне развития физики являются лишь теоретическим построением

и второе – сингулярность, не подчиняется ни одному из известных законов физики.

Отсюда можно заключить, что

КОСМОЛОГИЧЕСКАЯ СИНГУЛЯРНОСТЬ – это математическая абстракция, не имеющая достоверной физической интерпретации.

Науке пока не известно, что происходит с веществом при его, условно говоря, неограниченном сжатии, когда плотность и температура достигают Планковских значений, или возможно их превышают.

Воспроизвести на Земле условия подобного сжатия, чтобы экспериментально что-то изучить и проверить, технически невозможно, даже в обозримой перспективе.

Такого рода условия создаёт только сама Природа, её величество Гравитация, порождая во Вселенной сверхсжатые объекты, так называемые черные дыры (ЧД).

Физика процессов, происходящих с веществом внутри черной дыры, остается загадкой для науки.

Нет и теории, математического описания подобного рода процессов. Определенные надежды связывают с разработкой теории квантовой гравитации, но создать её пока не удаётся.

Зато можно, в отсутствие научной теории, выдвигать гипотезы, строить различные догадки и предположения.

Физическая трактовка сингулярности БВ – Предположение

С учетом вышеизложенного почему бы не предположить, что

Большой взрыв явился следствием перехода вещества сверхмассивной («созревшей») черной дыры в иное фазовое состояние.

Есть ли основания для такого рода предположения? Судите сами.

Первое – вещество Вселенной эволюционирует между, условно говоря, двумя полюсами: от максимально разреженного «пустого» пространства до предельно сжатого состояния черной дыры, находясь в зависимости от условий в той или иной промежуточной стадии, как-то газообразном, жидком, твердом состоянии.

Второе – в черных дырах, этих гравитационных пылесосах Вселенной, сосредоточены огромные массы материи.

По данным Википедии: масса самой тяжёлой сверхмассивной чёрной дыры, обнаруженной в галактике NGC 4889, составляет около 21 млрд солнечных масс, чёрная дыра в квазаре OJ 287 имеет массу 18 млрд и чёрная дыра в центре галактики NGC 1277 - 17 млрд солнечных масс. Эти массы вполне сопоставимы с массой целых небольших галактик.

Ещё одна сверхмассивная чёрная дыра, Q0906+6930 массой в 10 млрд масс Солнц, расположена в созвездии Большой Медведицы на расстоянии 12,7 млрд световых лет от Земли.

Третье – возраст нашей Вселенной оценивается в 13,8 млрд лет. У многих ученых возникает вопрос, как могли появиться столь массивные черные дыры на столь ранней стадии эволюции Вселенной. А если предположить, что черные дыры существовали и до Большого взрыва, который лишь привел к образованию Вселенной, как локального фрагмента Мироздания?

Четвертое – существенным является также то, что черные дыры непрерывно наращивают свою массу, как за счет поглощения ими звезд и межзвездного вещества, так и путем слияния друг с другом, и чем может завершиться такой процесс увеличения массы черных дыр никто пока достоверно не знает.

Чтобы лучше себе представлять о каких фантастических, по нашим обыденным земным представлениям, массах вещества идет речь, стоит напомнить, что масса планеты Земля оценивается приблизительно в 5,98 секстиллионов тонн. Вот как выглядит это число:

5 980 000 000 000 000 000 000 тонн или 5,98·10 24 кг.

Причем, с каждым годом Земля становится все тяжелее: на нее оседает примерно тридцать тысяч тонн космической пыли в год. Масса же Солнца превышает массу Земли почти в 333 тысячи раз, и составляет приблизительно 1,99·10 30 кг. Черные дыры, упомянутые выше, в миллиарды, десятки миллиардов раз по массе больше Солнца.

Для наглядности, если принять за единицу массу Земли, то в сравнении получаем:

Что уж тогда говорить о массе вещества всей наблюдаемой Вселенной, оцениваемой более чем в 10 50 тонн? Трудно себе представить, чтобы все это вещество появилось из ничтожно малой точки – сингулярности Большого взрыва.

Пятое – если переместиться во времени обратно к начальной точке БВ, или, как говорят в кинематографе, отмотать пленку назад, то получим то, что называется Большое сжатие - один из возможных сценариев будущего Вселенной. По этому сценарию расширение Вселенной со временем меняется на сжатие, и Вселенная коллапсирует, в конце концов «схлопываясь в сингулярность (из Википедии)».

Сжимающаяся Вселенная будет разбиваться на отдельные изолированные группы. Вся материя коллапсирует в чёрные дыры, которые затем будут срастаться, создавая в результате единую чёрную дыру – сингулярность Большого сжатия (из Википедии).

И вот эта черная дыра с массой всей Вселенной превращается в стремящуюся к нулю точку с бесконечными плотностью вещества и температуры? То есть в то, что выше определено, как «схлопываясь в сингулярность»? Впечатляет, но едва ли способствует пониманию физической природы такого процесса.

Моё предположение:

СИНГУЛЯРНОСТЬ БОЛЬШОГО ВЗРЫВА – это математически абстрактное (вырожденное) описание центральной точки черной дыры в момент достижения ею под действием гравитационных сил сжатия критических значений плотности и температуры, достаточных для возникновения и развития процесса скачкообразного перехода материи (вещества) черной дыры в иное фазовое состояние.

Такой переход материи в иное фазовое состояние будет сопровождаться высвобождением колоссальной энергии в виде сгустка излучения, распространяющегося со световой (фотоны) скоростью.

Последователи модели БВ могут сказать, что Большой взрыв совсем не то, что обычно понимается как резкое возрастание давления с внезапным высвобождением энергии в определенной точке или области пространства, а это взрыв, который произошел одновременно везде, заполнив с самого начала все пространство.

Но что значит ВЕЗДЕ? Если Вселенная, следуя модели БВ, вначале занимала небольшой объем, а затем произошло её резкое (экспоненциально ускоренное) инфляционное расширение, то логично считать, что ВЕЗДЕ – это в относительно небольшой изначальной области, предшествующей последующему инфляционному расширению.

Также и для сверхгигантской черной дыры, вобравшей в себя всё вещество Вселенной (а возможно, только локального фрагмента или локальной Вселенной, или части локальной Вселенной), взрыв будет ВЕЗДЕ в пределах занимаемого ЧД объема, который может быть весьма значительным.

При этом распространяющаяся со световой скоростью область взрыва – излучение с температурой в тысячи миллиардов градусов чем это не инфляционное расширение?

В дальнейшем же, по мере остывания этой расширяющейся области излучения, рождаются и взаимодействуют различные элементарные частицы с последующим образованием из них вещества, звезд, планет и т.д., всё в соответствии с космологической моделью Большого взрыва.

Приведенная физическая интерпретация начального момента БВ представляется мне не совсем лишенной смысла, и к тому же более естественной для восприятия, чем просто математически абстрактное понятие сингулярности.

Мнение ученого

Известный ученый-космолог, знаменитый физик, Нобелевский лауреат Стивен Вайнберг в своих книгах «Первые три минуты», «Мечты об окончательной теории» подробно и доходчиво объясняет физику процессов, происходивших начиная с одной сотой доли секунды после Большого взрыва, процессов, которые в итоге привели к образованию нашей сегодняшней Вселенной. Однако столь же ясное физическое понимание того, что происходило в более ранний (до одной сотой секунды) промежуток времени, по его мнению, является затруднительным в силу ряда причин. Вот как об этом пишет сам С. Вайнберг (фрагменты из его книги «Первые три минуты»):

Незнание микроскопической физики стоит как пелена, застилающая взор при взгляде на самое начало.

Тем не менее мы можем, по крайней мере, вообразить момент времени, когда гравитационные силы были столь же велики, как и сильные ядерные взаимодействия… . При сверхвысоких температурах энергия частиц в тепловом равновесии может стать так велика, что силы тяготения между ними станут такими же большими, как и любые другие силы. Можно оценить, что такое положение будет достигнуто при температуре около 100 миллионов миллионов миллионов миллионов миллионов градусов (10 32 К). (А.Ч.: 10 32 К – Планковская температура).

Мы слишком мало знаем о квантовой природе гравитации даже для того, чтобы делать разумные предположения об истории Вселенной до этого времени.

Одна возможность заключается в том, что на самом деле никогда не было состояния бесконечной плотности. Теперешнее расширение Вселенной могло начаться в конце предыдущей эры сжатия, когда плотность Вселенной достигала какого-то очень большого, но конечного значения.

Новый этап в развитии современной космологии наступил после работ Фридмана (1922 г.).

Используя релятивистскую теорию тяготения Эйнштейна, он получил математическую модель движения вещества во всей Вселенной под действием сил тяготения. Фридман доказал, что вещество Вселенной не может находиться в покое, т.е. Вселенная нестационарная: она должна либо сжиматься, либо расширяться. Из теории Фридмана следует, что наша Вселенная возникла из состояния космологической сингулярности.

В 1948 г. Гамов, Альфер и Херман предложили вариант возникновения горячей Вселенной как результат "Большого Взрыва" вещества.

Основная идея гипотезы горячей Вселенной заключалась в том, чтобы процессы протекания термоядерных реакций в самом начале расширения Вселенной после взрыва и по мере дальнейшей ее эволюции привели к наблюдаемому в космосе в настоящее время соотношению между количеством различных химических элементов и их изотопов.

Наблюдения за различными объектами Вселенной: горячими звездами, большими газовыми туманностями, гигантскими молекулярными облаками, Солнцем, космическими лучами, квазарами, галактиками и т. д. показазали, что в них, по массе, обнаруживается 25  27% гелия, 70  72% водорода и малая примесь остальных химических элементов, доля которых меняется от объекта к объекту, а содержание гелия и водорода постоянно.

Но до образования небесных тел (галактик, звезд и т.д.) вещество Вселенной однородно (все четыре силовых взаимодействий представляет одно "суперобъединение" при температуре T10 32 К) и ни каких перепадов давления не имелось, следовательно, не было и силы, в результате которой и началось стремительное расширение. Особую роль при этом сыграл физический вакуум. Причем он в зависимости от условий может быть разным.

В нем вместе с плотностью энергии (из-за взаимодействия виртуальных частиц) одновременно возникают натяжения (подобно силам натяжения, возникающим при растяжении, например металлического стержня). Эти натяжения эквивалентны отрицательному давлению, т.е. как бы возникает отрицательное давление. В обычных средах натяжения и давления составляют малую долю полной плотности энергии. В физическом вакууме отрицательное давление огромно и по абсолютной величине равно плотности энергии. По мере расширения Вселенной (происходит понижение температуры) симметрия между электромагнитным и слабым взаимодействием нарушается. Как известно, слабое взаимодействие связывают с наличием особых зарядов (отличных от электрических зарядов, между которыми осуществляется электромагнитное взаимодействие с помощью фотонов) и это взаимодействие происходит на очень малых расстояниях.

Это связано, прежде всего, с большой массой переносчиков слабого взаимодействия W + , W  и Z o - бозонов. Однако при температуре выше T10 15 К, как показывает расчет, существует единое электрослабое взаимодействие между частицами.

Его переносчики W + , W  и Z o - бозоны и -фотоны имеются в изобилии и не обладают массой. Нет массы у кварков и лептонов.Спустя несколько минут после расширения Вселенной температура упала до 10 9 К.

При таких температурах уже стало возможным соединение протонов и нейтронов с образованием ядер дейтерия, которые в результате термоядерных реакций приводили к образованию ядер атомов гелия.

Но из-за продолжающегося расширения Вселенной и снижения температуры термоядерные реакции ранней Вселенной прекращались.

За 5 минут успело образоваться около 25% гелия, а 75% составлял водород. Действительно многочисленные наблюдения показали, что первое поколение звезд во Вселенной имело именно такой процентный состав.

Ядра атомов более тяжелых элементов появились во Вселенной много миллиардов лет позже в результате ядерных реакций в недрах звезд. Все активные процессы с участием элементарных частиц закончились, и наступил длительный период относительно спокойного расширения Вселенной.

Расширяющееся вещество представляло собой высокотемпературную, ионизированную плазму, не прозрачную для излучения фотонов, которое и определяло в тот момент силу давления.

В этой смеси плазмы и излучения имелись небольшие колебания плотности вещества - звуковые волны. По истечении 310 5 лет фотонной эры, за счет продолжающегося расширения Вселенной, плазма остыла до 410 3 К и превратилась в нейтральный газ в процессе захвата ядрами атомов свободных электронов. Этот газ стал прозрачным для фотонов, которые получили (открыты в 1965 г.) название реликтового излучения. В настоящее время энергия реликтовых фотонов уменьшилась, а температура фотонного излучения составляет всего 3  5 К. Реликтовое излучение представляет собой слабый радиошум, приходящий из космоса независимо от направления приемной антенны. Число фотонов реликтового излучения, находящихся в каждом 1 см 3 Вселенной, 500, а их плотность энергии 510  13 эрг/cм 3 . Из-за отсутствия давления излучения упругость нейтрального газа резко упала и стало возможным проявление гравитационной неустойчивости, которая привела к образованию достаточно больших по размеру сгущений газа. Вследствие уплотнения звуковых колебаний при распространении их в этих комках газа, силы тяготения начинают увеличиваться, что и приводит к образованию массивных облаков, эволюционирующих в дальнейшем в сверхскопления галактик, скопления галактик и галактики.

Все что наблюдается сегодня в космосе  проявление космологической сингулярности.

В настоящее время считается, что никакого предварительного сжатия перед космологической сингулярностью не было, она стала истоком времени, а сингулярность внутри черной дыры является концом ручейков реки времени. Поэтому в космологической сингулярности время и пространство так же распадаются на кванты. В связи с этим теряет смысл сам вопрос, а что было еще раньше? Можно только отметить, что вблизи сингулярности в масштабах квантов времени и пространства, существовала "пена" этих квантов, т.е. наблюдались квантовые флуктуации пространства и времени. В это время рождаются и тут же исчезают небольшие "виртуальные" замкнутые миры и виртуальные черные, и белые дыры.

Столь малые размеры при больших энергиях кипящей "пены", обусловили возможность существования не трех, а более измерений. Однако эти дополнительные измерения остаются скрученными и не реализуются, а остаются только три пространственных измерения, которые при расширении вещества приводят к современному состоянию Вселенной.

Следовательно, время в сингулярности в корне меняет свои квантовые свойства и начало расширения Вселенной является истоком нашего непрерывного потока времени, которое течет в одном направлении: от прошлого к будущему. Известно, что космологическая сингулярность произошла 15  20 млрд. лет назад. За это время, свет вышедший из какого-либо источника даже в момент начала расширения, успеет пройти конечное расстояние во Вселенной 1520 млрд. световых лет или около 610 15 пк. Поэтому точки пространства Вселенной, лежащие от нас на таких расстояниях, называют горизонтом видимости. Те области пространства, которые лежат за горизонтом видимости, сегодня принципиально не наблюдаемы, а вблизи горизонта видимости мы можем наблюдать вещество из далекого прошлого.

Из-за эффекта Доплера красное смещение света неограниченно нарастает, когда излучающий объект приближается к горизонту видимости. А на самом горизонте - оно бесконечно, поэтому мы можем видеть лишь конечное число звезд и галактик во Вселенной. В связи с этим решается парадокс классической космологии: фотометрический, который заключается в следующем. Так как Вселенная бесконечна, она заполнена бесконечным числом звезд и луч зрения рано или поздно встретит светящуюся звезду. В этом случае все небо должно сиять как поверхность Солнца или поверхность других звезд. В действительности из-за наличия горизонта видимости мы видим конечное число звезд, которые редко разбросаны в пространстве. Наше ночное небо представляется темным: в нем видны хаотично разбросанные светящиеся точки звезд. Подтверждением горячего начала возникновения нашей Вселенной являются результаты наблюдений за объектами космического пространства. К ним относятся, например, наличие реликтового излучения, наличие 25  30% гелия в составе до звездного вещества ранней Вселенной.

Мы обращаемся к рассмотрению важнейшего вопроса космологии - вопроса о начале космологического расширения, вопроса о сингулярности. Обобщающий итог изложенного в предыдущих разделах состоит в том, что Вселенная расширяется изотропно и однородно, начиная, по крайней мере, с момента, когда выполнялось равенство и с большой степенью вероятности описывалась моделью Фридмана еще гораздо раньше, начиная с эпохи протекания синтеза химических элементов, т. е. с первых секунд расширения и с плотностей порядка

Что было еще раньше? Расширялась ли Вселенная по Фридману, начиная с сингулярности (или, по крайней мере, с «планковского» момента или ранняя эпоха была существенно не фридмановской? Проходило ли вещество Вселенной через бесконечно большую плотность (или, по крайней мере, через «планковскую» плотность или же сжатие Вселенной в еще более раннюю эпоху сменилось расширением при конечной плотности [см., например, Альвен (1971)]?

Согласно модели Фридмана, расширение Вселенной начиналось от сингулярности. Начиная с 30-х годов, на протяжении десятилетий перед космологией стоял не является ли наличие сингулярности в начале расширения специальным свойством модели Фридмана (и других достаточно симметричных моделей), не исчезнет ли сингулярность при введении небольших пекулярных скоростей движения материи или вращения?

Аналогия с механической задачей о расширении шара в теории Ньютона подкрепляла такие предположения. Действительно, если рассматривать в теории Ньютона разлет тяготеющих частиц, одновременно вылетающих по радиусам из одной точки, то расширение начинается от сингулярности. Однако при наличии небольших пекулярных скоростей точки пролетают друг мимо друга вблизи Центра, плотность частиц всегда конечна и сингулярности не

возникают. Может быть, аналогичная ситуация возможна и в космологической задаче теории Эйнштейна?

Здесь существенно отметить одно обстоятельство, которое подчеркивается Лифшицем и Халатниковым (1963а, б). Если сингулярности в прошлом не было и наблюдаемому расширению Вселенной в прошлом предшествовало сжатие, то космологическая модель, описывающая прохождение вещества через максимум плотности и последующее расширение, должна быть устойчивой, т. е. относиться к «общему решению» по терминологии Лифшица и Халатникова. Иначе говоря, пусть есть какая-то модель без сингулярности, описывающая сжатие вещества до конечной плотности (без сингулярности), а затем его расширение, и пусть малое изменение параметров модели на фазе сжатия приводит к возникновению сингулярности. Тогда, очевидно, эта модель не может осуществляться в действительности, так как всегда найдутся случайные флуктуации, уводящие модель от решения без сингулярности. Таким образом, решение без сингулярности должно быть не исключительным, не вырожденным, а общим, чтобы претендовать на описание реальной Вселенной.

Однако если расширение начинается от сингулярности, то требование общности решения вблизи сингулярности уже не обязательно. Действительно, в этом случае начальные условия, определяющие решение, задаются какими-то неизвестными процессами при огромных кривизнах пространства-времени, т. е. в условиях, не описываемых современной теорией. Возможно, процессы в этом случае приводят к специальным начальным условиям расширения Вселенной, например к почти полной однородности и изотропии [см. Пиблс (1971а)]. Поэтому, если бы даже удалось доказать, что общее решение не содержит сингулярности, то это еще не означало бы, что расширение начиналось не от сингулярности.

Итак, перед космологией стояло два разных вопроса: 1) имеется ли общее (в смысле «устойчивое») космологическое решение без сингулярности? и 2) была ли сингулярность в прошлом в условиях, имеющих место в реальной Вселенной?

В конце 60-х годов был дан положительный ответ на второй вопрос (Пенроуз, Хоукинг, Героч). Было доказано, что расширение Вселенной начиналось с сингулярности (если, конечно, справедлива ОТО, но само изменение ОТО, если это связано с большой кривизной, требует «почти» сингулярности), однако, как именно протекало расширение вблизи сингулярности - по Фридману или более сложным образом, - установлено не было. После этих работ острота первого вопроса для космологии отпала. Действительно, структура решения вблизи сингулярности не обязательно соответствует общему решению, и возникает задача: каким-либо способом

установить истинный характер начала расширения реальной Вселенной.

В 1972 г. после длительной работы Белинский, Лифшиц, Халатников построили общее (устойчивое) решение с сингулярностью, т. е. дали положительный ответ на первый вопрос.

По своим свойствам общее решение оказалось качественно таким же, как решение вблизи сингулярности для модели «перемешанного» мира (см. §§ 4 и 5 гл. 21).

При дальнейшем изложении мы остановимся на доказательстве наличия сингулярности в прошлом во Вселенной и на физических процессах вблизи самой сингулярности. Можно надеяться, что в будущем анализ этих процессов и следствий из них позволит установить истинный характер расширения Вселенной на самых ранних стадиях, при плотностях, существенно превышающих ядерную.